draft-ietf-detnet-use-cases-13.txt   draft-ietf-detnet-use-cases-14.txt 
Internet Engineering Task Force E. Grossman, Ed. Internet Engineering Task Force E. Grossman, Ed.
Internet-Draft DOLBY Internet-Draft DOLBY
Intended status: Informational C. Gunther Intended status: Informational February 23, 2018
Expires: March 22, 2018 HARMAN Expires: August 27, 2018
P. Thubert
P. Wetterwald
CISCO
J. Raymond
HYDRO-QUEBEC
J. Korhonen
BROADCOM
Y. Kaneko
Toshiba
S. Das
Applied Communication Sciences
Y. Zha
HUAWEI
B. Varga
J. Farkas
Ericsson
F. Goetz
J. Schmitt
Siemens
X. Vilajosana
Worldsensing
T. Mahmoodi
King's College London
S. Spirou
Intracom Telecom
P. Vizarreta
Technical University of Munich, TUM
D. Huang
ZTE Corporation, Inc.
X. Geng
HUAWEI
D. Dujovne
UDP
M. Seewald
CISCO
September 18, 2017
Deterministic Networking Use Cases Deterministic Networking Use Cases
draft-ietf-detnet-use-cases-13 draft-ietf-detnet-use-cases-14
Abstract Abstract
This draft documents requirements in several diverse industries to This draft documents requirements in several diverse industries to
establish multi-hop paths for characterized flows with deterministic establish multi-hop paths for characterized flows with deterministic
properties. In this context deterministic implies that streams can properties. In this context deterministic implies that streams can
be established which provide guaranteed bandwidth and latency which be established which provide guaranteed bandwidth and latency which
can be established from either a Layer 2 or Layer 3 (IP) interface, can be established from either a Layer 2 or Layer 3 (IP) interface,
and which can co-exist on an IP network with best-effort traffic. and which can co-exist on an IP network with best-effort traffic.
skipping to change at page 2, line 40 skipping to change at page 1, line 46
Internet-Drafts are working documents of the Internet Engineering Internet-Drafts are working documents of the Internet Engineering
Task Force (IETF). Note that other groups may also distribute Task Force (IETF). Note that other groups may also distribute
working documents as Internet-Drafts. The list of current Internet- working documents as Internet-Drafts. The list of current Internet-
Drafts is at https://datatracker.ietf.org/drafts/current/. Drafts is at https://datatracker.ietf.org/drafts/current/.
Internet-Drafts are draft documents valid for a maximum of six months Internet-Drafts are draft documents valid for a maximum of six months
and may be updated, replaced, or obsoleted by other documents at any and may be updated, replaced, or obsoleted by other documents at any
time. It is inappropriate to use Internet-Drafts as reference time. It is inappropriate to use Internet-Drafts as reference
material or to cite them other than as "work in progress." material or to cite them other than as "work in progress."
This Internet-Draft will expire on March 22, 2018. This Internet-Draft will expire on August 27, 2018.
Copyright Notice Copyright Notice
Copyright (c) 2017 IETF Trust and the persons identified as the Copyright (c) 2018 IETF Trust and the persons identified as the
document authors. All rights reserved. document authors. All rights reserved.
This document is subject to BCP 78 and the IETF Trust's Legal This document is subject to BCP 78 and the IETF Trust's Legal
Provisions Relating to IETF Documents Provisions Relating to IETF Documents
(https://trustee.ietf.org/license-info) in effect on the date of (https://trustee.ietf.org/license-info) in effect on the date of
publication of this document. Please review these documents publication of this document. Please review these documents
carefully, as they describe your rights and restrictions with respect carefully, as they describe your rights and restrictions with respect
to this document. Code Components extracted from this document must to this document. Code Components extracted from this document must
include Simplified BSD License text as described in Section 4.e of include Simplified BSD License text as described in Section 4.e of
the Trust Legal Provisions and are provided without warranty as the Trust Legal Provisions and are provided without warranty as
described in the Simplified BSD License. described in the Simplified BSD License.
Table of Contents Table of Contents
1. Introduction . . . . . . . . . . . . . . . . . . . . . . . . 6 1. Introduction . . . . . . . . . . . . . . . . . . . . . . . . 5
2. Pro Audio and Video . . . . . . . . . . . . . . . . . . . . . 7 2. Pro Audio and Video . . . . . . . . . . . . . . . . . . . . . 6
2.1. Use Case Description . . . . . . . . . . . . . . . . . . 7 2.1. Use Case Description . . . . . . . . . . . . . . . . . . 6
2.1.1. Uninterrupted Stream Playback . . . . . . . . . . . . 8 2.1.1. Uninterrupted Stream Playback . . . . . . . . . . . . 7
2.1.2. Synchronized Stream Playback . . . . . . . . . . . . 8 2.1.2. Synchronized Stream Playback . . . . . . . . . . . . 7
2.1.3. Sound Reinforcement . . . . . . . . . . . . . . . . . 9 2.1.3. Sound Reinforcement . . . . . . . . . . . . . . . . . 8
2.1.4. Deterministic Time to Establish Streaming . . . . . . 9 2.1.4. Deterministic Time to Establish Streaming . . . . . . 8
2.1.5. Secure Transmission . . . . . . . . . . . . . . . . . 9 2.1.5. Secure Transmission . . . . . . . . . . . . . . . . . 8
2.1.5.1. Safety . . . . . . . . . . . . . . . . . . . . . 9 2.1.5.1. Safety . . . . . . . . . . . . . . . . . . . . . 8
2.2. Pro Audio Today . . . . . . . . . . . . . . . . . . . . . 9 2.2. Pro Audio Today . . . . . . . . . . . . . . . . . . . . . 9
2.3. Pro Audio Future . . . . . . . . . . . . . . . . . . . . 10 2.3. Pro Audio Future . . . . . . . . . . . . . . . . . . . . 9
2.3.1. Layer 3 Interconnecting Layer 2 Islands . . . . . . . 10 2.3.1. Layer 3 Interconnecting Layer 2 Islands . . . . . . . 9
2.3.2. High Reliability Stream Paths . . . . . . . . . . . . 10 2.3.2. High Reliability Stream Paths . . . . . . . . . . . . 9
2.3.3. Integration of Reserved Streams into IT Networks . . 10 2.3.3. Integration of Reserved Streams into IT Networks . . 9
2.3.4. Use of Unused Reservations by Best-Effort Traffic . . 11 2.3.4. Use of Unused Reservations by Best-Effort Traffic . . 10
2.3.5. Traffic Segregation . . . . . . . . . . . . . . . . . 11 2.3.5. Traffic Segregation . . . . . . . . . . . . . . . . . 10
2.3.5.1. Packet Forwarding Rules, VLANs and Subnets . . . 11 2.3.5.1. Packet Forwarding Rules, VLANs and Subnets . . . 10
2.3.5.2. Multicast Addressing (IPv4 and IPv6) . . . . . . 12 2.3.5.2. Multicast Addressing (IPv4 and IPv6) . . . . . . 11
2.3.6. Latency Optimization by a Central Controller . . . . 12 2.3.6. Latency Optimization by a Central Controller . . . . 11
2.3.7. Reduced Device Cost Due To Reduced Buffer Memory . . 12 2.3.7. Reduced Device Cost Due To Reduced Buffer Memory . . 11
2.4. Pro Audio Asks . . . . . . . . . . . . . . . . . . . . . 13 2.4. Pro Audio Asks . . . . . . . . . . . . . . . . . . . . . 12
3. Electrical Utilities . . . . . . . . . . . . . . . . . . . . 13 3. Electrical Utilities . . . . . . . . . . . . . . . . . . . . 12
3.1. Use Case Description . . . . . . . . . . . . . . . . . . 13 3.1. Use Case Description . . . . . . . . . . . . . . . . . . 12
3.1.1. Transmission Use Cases . . . . . . . . . . . . . . . 13 3.1.1. Transmission Use Cases . . . . . . . . . . . . . . . 12
3.1.1.1. Protection . . . . . . . . . . . . . . . . . . . 13 3.1.1.1. Protection . . . . . . . . . . . . . . . . . . . 12
3.1.1.2. Intra-Substation Process Bus Communications . . . 19 3.1.1.2. Intra-Substation Process Bus Communications . . . 18
3.1.1.3. Wide Area Monitoring and Control Systems . . . . 20 3.1.1.3. Wide Area Monitoring and Control Systems . . . . 19
3.1.1.4. IEC 61850 WAN engineering guidelines requirement 3.1.1.4. IEC 61850 WAN engineering guidelines requirement
classification . . . . . . . . . . . . . . . . . 21 classification . . . . . . . . . . . . . . . . . 20
3.1.2. Generation Use Case . . . . . . . . . . . . . . . . . 22 3.1.2. Generation Use Case . . . . . . . . . . . . . . . . . 21
3.1.2.1. Control of the Generated Power . . . . . . . . . 22 3.1.2.1. Control of the Generated Power . . . . . . . . . 21
3.1.2.2. Control of the Generation Infrastructure . . . . 23 3.1.2.2. Control of the Generation Infrastructure . . . . 22
3.1.3. Distribution use case . . . . . . . . . . . . . . . . 28 3.1.3. Distribution use case . . . . . . . . . . . . . . . . 27
3.1.3.1. Fault Location Isolation and Service Restoration 3.1.3.1. Fault Location Isolation and Service Restoration
(FLISR) . . . . . . . . . . . . . . . . . . . . . 28 (FLISR) . . . . . . . . . . . . . . . . . . . . . 27
3.2. Electrical Utilities Today . . . . . . . . . . . . . . . 29 3.2. Electrical Utilities Today . . . . . . . . . . . . . . . 28
3.2.1. Security Current Practices and Limitations . . . . . 29 3.2.1. Security Current Practices and Limitations . . . . . 28
3.3. Electrical Utilities Future . . . . . . . . . . . . . . . 31 3.3. Electrical Utilities Future . . . . . . . . . . . . . . . 30
3.3.1. Migration to Packet-Switched Network . . . . . . . . 32 3.3.1. Migration to Packet-Switched Network . . . . . . . . 31
3.3.2. Telecommunications Trends . . . . . . . . . . . . . . 32 3.3.2. Telecommunications Trends . . . . . . . . . . . . . . 31
3.3.2.1. General Telecommunications Requirements . . . . . 32 3.3.2.1. General Telecommunications Requirements . . . . . 31
3.3.2.2. Specific Network topologies of Smart Grid 3.3.2.2. Specific Network topologies of Smart Grid
Applications . . . . . . . . . . . . . . . . . . 33 Applications . . . . . . . . . . . . . . . . . . 32
3.3.2.3. Precision Time Protocol . . . . . . . . . . . . . 34 3.3.2.3. Precision Time Protocol . . . . . . . . . . . . . 33
3.3.3. Security Trends in Utility Networks . . . . . . . . . 35 3.3.3. Security Trends in Utility Networks . . . . . . . . . 34
3.4. Electrical Utilities Asks . . . . . . . . . . . . . . . . 37 3.4. Electrical Utilities Asks . . . . . . . . . . . . . . . . 36
4. Building Automation Systems . . . . . . . . . . . . . . . . . 37 4. Building Automation Systems . . . . . . . . . . . . . . . . . 36
4.1. Use Case Description . . . . . . . . . . . . . . . . . . 37 4.1. Use Case Description . . . . . . . . . . . . . . . . . . 36
4.2. Building Automation Systems Today . . . . . . . . . . . . 38 4.2. Building Automation Systems Today . . . . . . . . . . . . 37
4.2.1. BAS Architecture . . . . . . . . . . . . . . . . . . 38 4.2.1. BAS Architecture . . . . . . . . . . . . . . . . . . 37
4.2.2. BAS Deployment Model . . . . . . . . . . . . . . . . 39 4.2.2. BAS Deployment Model . . . . . . . . . . . . . . . . 38
4.2.3. Use Cases for Field Networks . . . . . . . . . . . . 41 4.2.3. Use Cases for Field Networks . . . . . . . . . . . . 40
4.2.3.1. Environmental Monitoring . . . . . . . . . . . . 41 4.2.3.1. Environmental Monitoring . . . . . . . . . . . . 40
4.2.3.2. Fire Detection . . . . . . . . . . . . . . . . . 41 4.2.3.2. Fire Detection . . . . . . . . . . . . . . . . . 40
4.2.3.3. Feedback Control . . . . . . . . . . . . . . . . 42 4.2.3.3. Feedback Control . . . . . . . . . . . . . . . . 41
4.2.4. Security Considerations . . . . . . . . . . . . . . . 42 4.2.4. Security Considerations . . . . . . . . . . . . . . . 41
4.3. BAS Future . . . . . . . . . . . . . . . . . . . . . . . 42 4.3. BAS Future . . . . . . . . . . . . . . . . . . . . . . . 41
4.4. BAS Asks . . . . . . . . . . . . . . . . . . . . . . . . 43 4.4. BAS Asks . . . . . . . . . . . . . . . . . . . . . . . . 42
5. Wireless for Industrial . . . . . . . . . . . . . . . . . . . 43 5. Wireless for Industrial . . . . . . . . . . . . . . . . . . . 42
5.1. Use Case Description . . . . . . . . . . . . . . . . . . 43 5.1. Use Case Description . . . . . . . . . . . . . . . . . . 42
5.1.1. Network Convergence using 6TiSCH . . . . . . . . . . 44 5.1.1. Network Convergence using 6TiSCH . . . . . . . . . . 43
5.1.2. Common Protocol Development for 6TiSCH . . . . . . . 44 5.1.2. Common Protocol Development for 6TiSCH . . . . . . . 43
5.2. Wireless Industrial Today . . . . . . . . . . . . . . . . 45 5.2. Wireless Industrial Today . . . . . . . . . . . . . . . . 44
5.3. Wireless Industrial Future . . . . . . . . . . . . . . . 45 5.3. Wireless Industrial Future . . . . . . . . . . . . . . . 44
5.3.1. Unified Wireless Network and Management . . . . . . . 45 5.3.1. Unified Wireless Network and Management . . . . . . . 44
5.3.1.1. PCE and 6TiSCH ARQ Retries . . . . . . . . . . . 47 5.3.1.1. PCE and 6TiSCH ARQ Retries . . . . . . . . . . . 46
5.3.2. Schedule Management by a PCE . . . . . . . . . . . . 48 5.3.2. Schedule Management by a PCE . . . . . . . . . . . . 47
5.3.2.1. PCE Commands and 6TiSCH CoAP Requests . . . . . . 48 5.3.2.1. PCE Commands and 6TiSCH CoAP Requests . . . . . . 47
5.3.2.2. 6TiSCH IP Interface . . . . . . . . . . . . . . . 49 5.3.2.2. 6TiSCH IP Interface . . . . . . . . . . . . . . . 48
5.3.3. 6TiSCH Security Considerations . . . . . . . . . . . 50 5.3.3. 6TiSCH Security Considerations . . . . . . . . . . . 49
5.4. Wireless Industrial Asks . . . . . . . . . . . . . . . . 50 5.4. Wireless Industrial Asks . . . . . . . . . . . . . . . . 49
6. Cellular Radio . . . . . . . . . . . . . . . . . . . . . . . 50 6. Cellular Radio . . . . . . . . . . . . . . . . . . . . . . . 49
6.1. Use Case Description . . . . . . . . . . . . . . . . . . 50 6.1. Use Case Description . . . . . . . . . . . . . . . . . . 49
6.1.1. Network Architecture . . . . . . . . . . . . . . . . 50 6.1.1. Network Architecture . . . . . . . . . . . . . . . . 49
6.1.2. Delay Constraints . . . . . . . . . . . . . . . . . . 51 6.1.2. Delay Constraints . . . . . . . . . . . . . . . . . . 50
6.1.3. Time Synchronization Constraints . . . . . . . . . . 53 6.1.3. Time Synchronization Constraints . . . . . . . . . . 52
6.1.4. Transport Loss Constraints . . . . . . . . . . . . . 55 6.1.4. Transport Loss Constraints . . . . . . . . . . . . . 54
6.1.5. Security Considerations . . . . . . . . . . . . . . . 55 6.1.5. Security Considerations . . . . . . . . . . . . . . . 54
6.2. Cellular Radio Networks Today . . . . . . . . . . . . . . 56 6.2. Cellular Radio Networks Today . . . . . . . . . . . . . . 55
6.2.1. Fronthaul . . . . . . . . . . . . . . . . . . . . . . 56 6.2.1. Fronthaul . . . . . . . . . . . . . . . . . . . . . . 55
6.2.2. Midhaul and Backhaul . . . . . . . . . . . . . . . . 56 6.2.2. Midhaul and Backhaul . . . . . . . . . . . . . . . . 55
6.3. Cellular Radio Networks Future . . . . . . . . . . . . . 57 6.3. Cellular Radio Networks Future . . . . . . . . . . . . . 56
6.4. Cellular Radio Networks Asks . . . . . . . . . . . . . . 59 6.4. Cellular Radio Networks Asks . . . . . . . . . . . . . . 58
7. Industrial M2M . . . . . . . . . . . . . . . . . . . . . . . 59 7. Industrial M2M . . . . . . . . . . . . . . . . . . . . . . . 58
7.1. Use Case Description . . . . . . . . . . . . . . . . . . 59 7.1. Use Case Description . . . . . . . . . . . . . . . . . . 58
7.2. Industrial M2M Communication Today . . . . . . . . . . . 60 7.2. Industrial M2M Communication Today . . . . . . . . . . . 59
7.2.1. Transport Parameters . . . . . . . . . . . . . . . . 61 7.2.1. Transport Parameters . . . . . . . . . . . . . . . . 60
7.2.2. Stream Creation and Destruction . . . . . . . . . . . 62 7.2.2. Stream Creation and Destruction . . . . . . . . . . . 61
7.3. Industrial M2M Future . . . . . . . . . . . . . . . . . . 62 7.3. Industrial M2M Future . . . . . . . . . . . . . . . . . . 61
7.4. Industrial M2M Asks . . . . . . . . . . . . . . . . . . . 62 7.4. Industrial M2M Asks . . . . . . . . . . . . . . . . . . . 61
8. Mining Industry . . . . . . . . . . . . . . . . . . . . . . . 62
8. Mining Industry . . . . . . . . . . . . . . . . . . . . . . . 63 8.1. Use Case Description . . . . . . . . . . . . . . . . . . 62
8.1. Use Case Description . . . . . . . . . . . . . . . . . . 63 8.2. Mining Industry Today . . . . . . . . . . . . . . . . . . 62
8.2. Mining Industry Today . . . . . . . . . . . . . . . . . . 63 8.3. Mining Industry Future . . . . . . . . . . . . . . . . . 63
8.3. Mining Industry Future . . . . . . . . . . . . . . . . . 64 8.4. Mining Industry Asks . . . . . . . . . . . . . . . . . . 64
8.4. Mining Industry Asks . . . . . . . . . . . . . . . . . . 65 9. Private Blockchain . . . . . . . . . . . . . . . . . . . . . 64
9. Private Blockchain . . . . . . . . . . . . . . . . . . . . . 65 9.1. Use Case Description . . . . . . . . . . . . . . . . . . 64
9.1. Use Case Description . . . . . . . . . . . . . . . . . . 65 9.1.1. Blockchain Operation . . . . . . . . . . . . . . . . 64
9.1.1. Blockchain Operation . . . . . . . . . . . . . . . . 65 9.1.2. Blockchain Network Architecture . . . . . . . . . . . 65
9.1.2. Blockchain Network Architecture . . . . . . . . . . . 66 9.1.3. Security Considerations . . . . . . . . . . . . . . . 65
9.1.3. Security Considerations . . . . . . . . . . . . . . . 66 9.2. Private Blockchain Today . . . . . . . . . . . . . . . . 65
9.2. Private Blockchain Today . . . . . . . . . . . . . . . . 66 9.3. Private Blockchain Future . . . . . . . . . . . . . . . . 66
9.3. Private Blockchain Future . . . . . . . . . . . . . . . . 67 9.4. Private Blockchain Asks . . . . . . . . . . . . . . . . . 66
9.4. Private Blockchain Asks . . . . . . . . . . . . . . . . . 67 10. Network Slicing . . . . . . . . . . . . . . . . . . . . . . . 66
10. Network Slicing . . . . . . . . . . . . . . . . . . . . . . . 67 10.1. Use Case Description . . . . . . . . . . . . . . . . . . 66
10.1. Use Case Description . . . . . . . . . . . . . . . . . . 67 10.2. Network Slicing Use Cases . . . . . . . . . . . . . . . 67
10.2. Network Slicing Use Cases . . . . . . . . . . . . . . . 68 10.2.1. Enhanced Mobile Broadband (eMBB) . . . . . . . . . . 67
10.2.1. Enhanced Mobile Broadband (eMBB) . . . . . . . . . . 68
10.2.2. Ultra-Reliable and Low Latency Communications 10.2.2. Ultra-Reliable and Low Latency Communications
(URLLC) . . . . . . . . . . . . . . . . . . . . . . 68 (URLLC) . . . . . . . . . . . . . . . . . . . . . . 67
10.2.3. massive Machine Type Communications (mMTC) . . . . . 68 10.2.3. massive Machine Type Communications (mMTC) . . . . . 67
10.3. Using DetNet in Network Slicing . . . . . . . . . . . . 68 10.3. Using DetNet in Network Slicing . . . . . . . . . . . . 67
10.4. Network Slicing Today and Future . . . . . . . . . . . . 69 10.4. Network Slicing Today and Future . . . . . . . . . . . . 68
10.5. Network Slicing Asks . . . . . . . . . . . . . . . . . . 69 10.5. Network Slicing Asks . . . . . . . . . . . . . . . . . . 68
11. Use Case Common Themes . . . . . . . . . . . . . . . . . . . 69 11. Use Case Common Themes . . . . . . . . . . . . . . . . . . . 68
11.1. Unified, standards-based network . . . . . . . . . . . . 69 11.1. Unified, standards-based network . . . . . . . . . . . . 68
11.1.1. Extensions to Ethernet . . . . . . . . . . . . . . . 69 11.1.1. Extensions to Ethernet . . . . . . . . . . . . . . . 68
11.1.2. Centrally Administered . . . . . . . . . . . . . . . 69 11.1.2. Centrally Administered . . . . . . . . . . . . . . . 68
11.1.3. Standardized Data Flow Information Models . . . . . 70 11.1.3. Standardized Data Flow Information Models . . . . . 69
11.1.4. L2 and L3 Integration . . . . . . . . . . . . . . . 70 11.1.4. L2 and L3 Integration . . . . . . . . . . . . . . . 69
11.1.5. Guaranteed End-to-End Delivery . . . . . . . . . . . 70 11.1.5. Guaranteed End-to-End Delivery . . . . . . . . . . . 69
11.1.6. Replacement for Multiple Proprietary Deterministic 11.1.6. Replacement for Multiple Proprietary Deterministic
Networks . . . . . . . . . . . . . . . . . . . . . . 70 Networks . . . . . . . . . . . . . . . . . . . . . . 69
11.1.7. Mix of Deterministic and Best-Effort Traffic . . . . 70 11.1.7. Mix of Deterministic and Best-Effort Traffic . . . . 69
11.1.8. Unused Reserved BW to be Available to Best Effort 11.1.8. Unused Reserved BW to be Available to Best Effort
Traffic . . . . . . . . . . . . . . . . . . . . . . 70 Traffic . . . . . . . . . . . . . . . . . . . . . . 69
11.1.9. Lower Cost, Multi-Vendor Solutions . . . . . . . . . 71 11.1.9. Lower Cost, Multi-Vendor Solutions . . . . . . . . . 70
11.2. Scalable Size . . . . . . . . . . . . . . . . . . . . . 71 11.2. Scalable Size . . . . . . . . . . . . . . . . . . . . . 70
11.3. Scalable Timing Parameters and Accuracy . . . . . . . . 71 11.3. Scalable Timing Parameters and Accuracy . . . . . . . . 70
11.3.1. Bounded Latency . . . . . . . . . . . . . . . . . . 71 11.3.1. Bounded Latency . . . . . . . . . . . . . . . . . . 70
11.3.2. Low Latency . . . . . . . . . . . . . . . . . . . . 71 11.3.2. Low Latency . . . . . . . . . . . . . . . . . . . . 70
11.3.3. Symmetrical Path Delays . . . . . . . . . . . . . . 72 11.3.3. Symmetrical Path Delays . . . . . . . . . . . . . . 71
11.4. High Reliability and Availability . . . . . . . . . . . 72 11.4. High Reliability and Availability . . . . . . . . . . . 71
11.5. Security . . . . . . . . . . . . . . . . . . . . . . . . 72 11.5. Security . . . . . . . . . . . . . . . . . . . . . . . . 71
11.6. Deterministic Flows . . . . . . . . . . . . . . . . . . 72 11.6. Deterministic Flows . . . . . . . . . . . . . . . . . . 71
12. Use Cases Explicitly Out of Scope for DetNet . . . . . . . . 72 12. Use Cases Explicitly Out of Scope for DetNet . . . . . . . . 71
12.1. DetNet Scope Limitations . . . . . . . . . . . . . . . . 73 12.1. DetNet Scope Limitations . . . . . . . . . . . . . . . . 72
12.2. Internet-based Applications . . . . . . . . . . . . . . 73 12.2. Internet-based Applications . . . . . . . . . . . . . . 72
12.2.1. Use Case Description . . . . . . . . . . . . . . . . 73 12.2.1. Use Case Description . . . . . . . . . . . . . . . . 72
12.2.1.1. Media Content Delivery . . . . . . . . . . . . . 74 12.2.1.1. Media Content Delivery . . . . . . . . . . . . . 73
12.2.1.2. Online Gaming . . . . . . . . . . . . . . . . . 74 12.2.1.2. Online Gaming . . . . . . . . . . . . . . . . . 73
12.2.1.3. Virtual Reality . . . . . . . . . . . . . . . . 74 12.2.1.3. Virtual Reality . . . . . . . . . . . . . . . . 73
12.2.2. Internet-Based Applications Today . . . . . . . . . 74 12.2.2. Internet-Based Applications Today . . . . . . . . . 73
12.2.3. Internet-Based Applications Future . . . . . . . . . 74 12.2.3. Internet-Based Applications Future . . . . . . . . . 73
12.2.4. Internet-Based Applications Asks . . . . . . . . . . 74 12.2.4. Internet-Based Applications Asks . . . . . . . . . . 73
12.3. Pro Audio and Video - Digital Rights Management (DRM) . 75 12.3. Pro Audio and Video - Digital Rights Management (DRM) . 74
12.4. Pro Audio and Video - Link Aggregation . . . . . . . . . 75 12.4. Pro Audio and Video - Link Aggregation . . . . . . . . . 74
13. Acknowledgments . . . . . . . . . . . . . . . . . . . . . . . 76 13. Contributors . . . . . . . . . . . . . . . . . . . . . . . . 75
13.1. Pro Audio . . . . . . . . . . . . . . . . . . . . . . . 76 14. Acknowledgments . . . . . . . . . . . . . . . . . . . . . . . 76
13.2. Utility Telecom . . . . . . . . . . . . . . . . . . . . 76 14.1. Pro Audio . . . . . . . . . . . . . . . . . . . . . . . 76
13.3. Building Automation Systems . . . . . . . . . . . . . . 76 14.2. Utility Telecom . . . . . . . . . . . . . . . . . . . . 77
13.4. Wireless for Industrial . . . . . . . . . . . . . . . . 76 14.3. Building Automation Systems . . . . . . . . . . . . . . 77
13.5. Cellular Radio . . . . . . . . . . . . . . . . . . . . . 77 14.4. Wireless for Industrial . . . . . . . . . . . . . . . . 77
13.6. Industrial M2M . . . . . . . . . . . . . . . . . . . . . 77 14.5. Cellular Radio . . . . . . . . . . . . . . . . . . . . . 77
13.7. Internet Applications and CoMP . . . . . . . . . . . . . 77 14.6. Industrial M2M . . . . . . . . . . . . . . . . . . . . . 77
13.8. Electrical Utilities . . . . . . . . . . . . . . . . . . 77 14.7. Internet Applications and CoMP . . . . . . . . . . . . . 78
13.9. Network Slicing . . . . . . . . . . . . . . . . . . . . 77 14.8. Electrical Utilities . . . . . . . . . . . . . . . . . . 78
13.10. Mining . . . . . . . . . . . . . . . . . . . . . . . . . 77 14.9. Network Slicing . . . . . . . . . . . . . . . . . . . . 78
13.11. Private Blockchain . . . . . . . . . . . . . . . . . . . 77 14.10. Mining . . . . . . . . . . . . . . . . . . . . . . . . . 78
14. Informative References . . . . . . . . . . . . . . . . . . . 77 14.11. Private Blockchain . . . . . . . . . . . . . . . . . . . 78
Authors' Addresses . . . . . . . . . . . . . . . . . . . . . . . 87 15. Informative References . . . . . . . . . . . . . . . . . . . 78
Author's Address . . . . . . . . . . . . . . . . . . . . . . . . 88
1. Introduction 1. Introduction
This draft presents use cases from diverse industries which have in This draft presents use cases from diverse industries which have in
common a need for deterministic streams, but which also differ common a need for deterministic streams, but which also differ
notably in their network topologies and specific desired behavior. notably in their network topologies and specific desired behavior.
Together, they provide broad industry context for DetNet and a Together, they provide broad industry context for DetNet and a
yardstick against which proposed DetNet designs can be measured (to yardstick against which proposed DetNet designs can be measured (to
what extent does a proposed design satisfy these various use cases?) what extent does a proposed design satisfy these various use cases?)
skipping to change at page 44, line 24 skipping to change at page 43, line 24
In this use case we focus on one specific wireless network technology In this use case we focus on one specific wireless network technology
which does provide the required deterministic QoS, which is "IPv6 which does provide the required deterministic QoS, which is "IPv6
over the TSCH mode of IEEE 802.15.4e" (6TiSCH, where TSCH stands for over the TSCH mode of IEEE 802.15.4e" (6TiSCH, where TSCH stands for
"Time-Slotted Channel Hopping", see [I-D.ietf-6tisch-architecture], "Time-Slotted Channel Hopping", see [I-D.ietf-6tisch-architecture],
[IEEE802154], [IEEE802154e], and [RFC7554]). [IEEE802154], [IEEE802154e], and [RFC7554]).
There are other deterministic wireless busses and networks available There are other deterministic wireless busses and networks available
today, however they are imcompatible with each other, and today, however they are imcompatible with each other, and
incompatible with IP traffic (for example [ISA100], [WirelessHART]). incompatible with IP traffic (for example [ISA100], [WirelessHART]).
Thus the primary goal of this use case is to apply 6TiSH as a Thus the primary goal of this use case is to apply 6TiSCH as a
converged IP- and standards-based wireless network for industrial converged IP- and standards-based wireless network for industrial
applications, i.e. to replace multiple proprietary and/or applications, i.e. to replace multiple proprietary and/or
incompatible wireless networking and wireless network management incompatible wireless networking and wireless network management
standards. standards.
5.1.2. Common Protocol Development for 6TiSCH 5.1.2. Common Protocol Development for 6TiSCH
Today there are a number of protocols required by 6TiSCH which are Today there are a number of protocols required by 6TiSCH which are
still in development, and a second intent of this use case is to still in development, and a second intent of this use case is to
highlight the ways in which these "missing" protocols share goals in highlight the ways in which these "missing" protocols share goals in
skipping to change at page 76, line 5 skipping to change at page 75, line 5
with the core goal of achieving the lowest possible latency. with the core goal of achieving the lowest possible latency.
For transmitting streams that require more bandwidth than a single For transmitting streams that require more bandwidth than a single
link in the target network can support, link aggregation is a link in the target network can support, link aggregation is a
technique for combining (aggregating) the bandwidth available on technique for combining (aggregating) the bandwidth available on
multiple physical links to create a single logical link of the multiple physical links to create a single logical link of the
required bandwidth. However, if aggregation is to be used, the required bandwidth. However, if aggregation is to be used, the
network controller (or equivalent) must be able to determine the network controller (or equivalent) must be able to determine the
maximum latency of any path through the aggregate link. maximum latency of any path through the aggregate link.
13. Acknowledgments 13. Contributors
13.1. Pro Audio RFC7322 limits the number of authors listed on the front page of a
draft to a maximum of 5, far fewer than the 20 individuals below who
made important contributions to this draft. The editor wishes to
thank and acknowledge each of the following authors for contributing
text to this draft. See also Section 14.
Craig Gunther (Harman International)
10653 South River Front Parkway, South Jordan,UT 84095
phone +1 801 568-7675, email craig.gunther@harman.com
Pascal Thubert (Cisco Systems, Inc)
Building D, 45 Allee des Ormes - BP1200, MOUGINS
Sophia Antipolis 06254 FRANCE
phone +33 497 23 26 34, email pthubert@cisco.com
Patrick Wetterwald (Cisco Systems)
45 Allees des Ormes, Mougins, 06250 FRANCE
phone +33 4 97 23 26 36, email pwetterw@cisco.com
Jean Raymond (Hydro-Quebec)
1500 University, Montreal, H3A3S7, Canada
phone +1 514 840 3000, email raymond.jean@hydro.qc.ca
Jouni Korhonen (Broadcom Corporation)
3151 Zanker Road, San Jose, 95134, CA, USA
email jouni.nospam@gmail.com
Yu Kaneko (Toshiba)
1 Komukai-Toshiba-cho, Saiwai-ku, Kasasaki-shi, Kanagawa, Japan
email yu1.kaneko@toshiba.co.jp
Subir Das (Applied Communication Sciences)
150 Mount Airy Road, Basking Ridge, New Jersey, 07920, USA
email sdas@appcomsci.com
Yiyong Zha (Huawei Technologies)
email
Balazs Varga (Ericsson)
Konyves Kalman krt. 11/B, Budapest, Hungary, 1097
email balazs.a.varga@ericsson.com
Janos Farkas (Ericsson)
Konyves Kalman krt. 11/B, Budapest, Hungary, 1097
email janos.farkas@ericsson.com
Franz-Josef Goetz (Siemens)
Gleiwitzerstr. 555, Nurnberg, Germany, 90475
email franz-josef.goetz@siemens.com
Juergen Schmitt (Siemens)
Gleiwitzerstr. 555, Nurnberg, Germany, 90475
email juergen.jues.schmitt@siemens.com
Xavier Vilajosana (Worldsensing)
483 Arago, Barcelona, Catalonia, 08013, Spain
email xvilajosana@worldsensing.com
Toktam Mahmoodi (King's College London)
Strand, London WC2R 2LS, United Kingdom
email toktam.mahmoodi@kcl.ac.uk
Spiros Spirou (Intracom Telecom)
19.7 km Markopoulou Ave., Peania, Attiki, 19002, Greece
email spiros.spirou@gmail.com
Petra Vizarreta (Technical University of Munich)
Maxvorstadt, ArcisstraBe 21, Munich, 80333, Germany
email petra.stojsavljevic@tum.de
Daniel Huang (ZTE Corporation, Inc.)
No. 50 Software Avenue, Nanjing, Jiangsu, 210012, P.R. China
email huang.guangping@zte.com.cn
Xuesong Geng (Huawei Technologies)
email gengxuesong@huawei.com
Diego Dujovne (Universidad Diego Portales)
email diego.dujovne@mail.udp.cl
Maik Seewald (Cisco Systems)
email maseewal@cisco.com
14. Acknowledgments
14.1. Pro Audio
This section was derived from draft-gunther-detnet-proaudio-req-01. This section was derived from draft-gunther-detnet-proaudio-req-01.
The editors would like to acknowledge the help of the following The editors would like to acknowledge the help of the following
individuals and the companies they represent: individuals and the companies they represent:
Jeff Koftinoff, Meyer Sound Jeff Koftinoff, Meyer Sound
Jouni Korhonen, Associate Technical Director, Broadcom Jouni Korhonen, Associate Technical Director, Broadcom
Pascal Thubert, CTAO, Cisco Pascal Thubert, CTAO, Cisco
Kieran Tyrrell, Sienda New Media Technologies GmbH Kieran Tyrrell, Sienda New Media Technologies GmbH
13.2. Utility Telecom 14.2. Utility Telecom
This section was derived from draft-wetterwald-detnet-utilities-reqs- This section was derived from draft-wetterwald-detnet-utilities-reqs-
02. 02.
Faramarz Maghsoodlou, Ph. D. IoT Connected Industries and Energy Faramarz Maghsoodlou, Ph. D. IoT Connected Industries and Energy
Practice Cisco Practice Cisco
Pascal Thubert, CTAO Cisco Pascal Thubert, CTAO Cisco
13.3. Building Automation Systems 14.3. Building Automation Systems
This section was derived from draft-bas-usecase-detnet-00. This section was derived from draft-bas-usecase-detnet-00.
13.4. Wireless for Industrial 14.4. Wireless for Industrial
This section was derived from draft-thubert-6tisch-4detnet-01. This section was derived from draft-thubert-6tisch-4detnet-01.
This specification derives from the 6TiSCH architecture, which is the This specification derives from the 6TiSCH architecture, which is the
result of multiple interactions, in particular during the 6TiSCH result of multiple interactions, in particular during the 6TiSCH
(bi)Weekly Interim call, relayed through the 6TiSCH mailing list at (bi)Weekly Interim call, relayed through the 6TiSCH mailing list at
the IETF. the IETF.
The authors wish to thank: Kris Pister, Thomas Watteyne, Xavier The authors wish to thank: Kris Pister, Thomas Watteyne, Xavier
Vilajosana, Qin Wang, Tom Phinney, Robert Assimiti, Michael Vilajosana, Qin Wang, Tom Phinney, Robert Assimiti, Michael
Richardson, Zhuo Chen, Malisa Vucinic, Alfredo Grieco, Martin Turon, Richardson, Zhuo Chen, Malisa Vucinic, Alfredo Grieco, Martin Turon,
Dominique Barthel, Elvis Vogli, Guillaume Gaillard, Herman Storey, Dominique Barthel, Elvis Vogli, Guillaume Gaillard, Herman Storey,
Maria Rita Palattella, Nicola Accettura, Patrick Wetterwald, Pouria Maria Rita Palattella, Nicola Accettura, Patrick Wetterwald, Pouria
Zand, Raghuram Sudhaakar, and Shitanshu Shah for their participation Zand, Raghuram Sudhaakar, and Shitanshu Shah for their participation
and various contributions. and various contributions.
13.5. Cellular Radio 14.5. Cellular Radio
This section was derived from draft-korhonen-detnet-telreq-00. This section was derived from draft-korhonen-detnet-telreq-00.
13.6. Industrial M2M 14.6. Industrial M2M
The authors would like to thank Feng Chen and Marcel Kiessling for The authors would like to thank Feng Chen and Marcel Kiessling for
their comments and suggestions. their comments and suggestions.
13.7. Internet Applications and CoMP 14.7. Internet Applications and CoMP
This section was derived from draft-zha-detnet-use-case-00. This section was derived from draft-zha-detnet-use-case-00.
This document has benefited from reviews, suggestions, comments and This document has benefited from reviews, suggestions, comments and
proposed text provided by the following members, listed in proposed text provided by the following members, listed in
alphabetical order: Jing Huang, Junru Lin, Lehong Niu and Oilver alphabetical order: Jing Huang, Junru Lin, Lehong Niu and Oilver
Huang. Huang.
13.8. Electrical Utilities 14.8. Electrical Utilities
The wind power generation use case has been extracted from the study The wind power generation use case has been extracted from the study
of Wind Farms conducted within the 5GPPP Virtuwind Project. The of Wind Farms conducted within the 5GPPP Virtuwind Project. The
project is funded by the European Union's Horizon 2020 research and project is funded by the European Union's Horizon 2020 research and
innovation programme under grant agreement No 671648 (VirtuWind). innovation programme under grant agreement No 671648 (VirtuWind).
13.9. Network Slicing 14.9. Network Slicing
This section was written by Xuesong Geng, who would like to This section was written by Xuesong Geng, who would like to
acknowledge Norm Finn and Mach Chen for their useful comments. acknowledge Norm Finn and Mach Chen for their useful comments.
13.10. Mining 14.10. Mining
This section was written by Diego Dujovne in conjunction with Xavier This section was written by Diego Dujovne in conjunction with Xavier
Vilasojana. Vilasojana.
13.11. Private Blockchain 14.11. Private Blockchain
This section was written by Daniel Huang. This section was written by Daniel Huang.
14. Informative References 15. Informative References
[ACE] IETF, "Authentication and Authorization for Constrained [ACE] IETF, "Authentication and Authorization for Constrained
Environments", Environments",
<https://datatracker.ietf.org/doc/charter-ietf-ace/>. <https://datatracker.ietf.org/doc/charter-ietf-ace/>.
[Ahm14] Ahmed, M. and R. Kim, "Communication network architectures [Ahm14] Ahmed, M. and R. Kim, "Communication network architectures
for smart-wind power farms.", Energies, p. 3900-3921. , for smart-wind power farms.", Energies, p. 3900-3921. ,
June 2014. June 2014.
[bacnetip] [bacnetip]
skipping to change at page 79, line 32 skipping to change at page 80, line 22
Statement", draft-finn-detnet-problem-statement-05 (work Statement", draft-finn-detnet-problem-statement-05 (work
in progress), March 2016. in progress), March 2016.
[I-D.ietf-6tisch-6top-interface] [I-D.ietf-6tisch-6top-interface]
Wang, Q. and X. Vilajosana, "6TiSCH Operation Sublayer Wang, Q. and X. Vilajosana, "6TiSCH Operation Sublayer
(6top) Interface", draft-ietf-6tisch-6top-interface-04 (6top) Interface", draft-ietf-6tisch-6top-interface-04
(work in progress), July 2015. (work in progress), July 2015.
[I-D.ietf-6tisch-architecture] [I-D.ietf-6tisch-architecture]
Thubert, P., "An Architecture for IPv6 over the TSCH mode Thubert, P., "An Architecture for IPv6 over the TSCH mode
of IEEE 802.15.4", draft-ietf-6tisch-architecture-12 (work of IEEE 802.15.4", draft-ietf-6tisch-architecture-13 (work
in progress), August 2017. in progress), November 2017.
[I-D.ietf-6tisch-coap] [I-D.ietf-6tisch-coap]
Sudhaakar, R. and P. Zand, "6TiSCH Resource Management and Sudhaakar, R. and P. Zand, "6TiSCH Resource Management and
Interaction using CoAP", draft-ietf-6tisch-coap-03 (work Interaction using CoAP", draft-ietf-6tisch-coap-03 (work
in progress), March 2015. in progress), March 2015.
[I-D.ietf-6tisch-terminology] [I-D.ietf-6tisch-terminology]
Palattella, M., Thubert, P., Watteyne, T., and Q. Wang, Palattella, M., Thubert, P., Watteyne, T., and Q. Wang,
"Terminology in IPv6 over the TSCH mode of IEEE "Terminology in IPv6 over the TSCH mode of IEEE
802.15.4e", draft-ietf-6tisch-terminology-09 (work in 802.15.4e", draft-ietf-6tisch-terminology-09 (work in
skipping to change at page 87, line 38 skipping to change at page 88, line 30
Applications over the Network", The 7th International Applications over the Network", The 7th International
Symposium on VICTORIES Project PetrHolub_presentation, Symposium on VICTORIES Project PetrHolub_presentation,
October 2014, <http://www.aist- October 2014, <http://www.aist-
victories.org/jp/7th_sympo_ws/PetrHolub_presentation.pdf>. victories.org/jp/7th_sympo_ws/PetrHolub_presentation.pdf>.
[WirelessHART] [WirelessHART]
www.hartcomm.org, "Industrial Communication Networks - www.hartcomm.org, "Industrial Communication Networks -
Wireless Communication Network and Communication Profiles Wireless Communication Network and Communication Profiles
- WirelessHART - IEC 62591", 2010. - WirelessHART - IEC 62591", 2010.
Authors' Addresses Author's Address
Ethan Grossman (editor) Ethan Grossman (editor)
Dolby Laboratories, Inc. Dolby Laboratories, Inc.
1275 Market Street 1275 Market Street
San Francisco, CA 94103 San Francisco, CA 94103
USA USA
Phone: +1 415 645 4726 Phone: +1 415 645 4726
Email: ethan.grossman@dolby.com Email: ethan.grossman@dolby.com
URI: http://www.dolby.com URI: http://www.dolby.com
Craig Gunther
Harman International
10653 South River Front Parkway
South Jordan, UT 84095
USA
Phone: +1 801 568-7675
Email: craig.gunther@harman.com
URI: http://www.harman.com
Pascal Thubert
Cisco Systems, Inc
Building D
45 Allee des Ormes - BP1200
MOUGINS - Sophia Antipolis 06254
FRANCE
Phone: +33 497 23 26 34
Email: pthubert@cisco.com
Patrick Wetterwald
Cisco Systems
45 Allees des Ormes
Mougins 06250
FRANCE
Phone: +33 4 97 23 26 36
Email: pwetterw@cisco.com
Jean Raymond
Hydro-Quebec
1500 University
Montreal H3A3S7
Canada
Phone: +1 514 840 3000
Email: raymond.jean@hydro.qc.ca
Jouni Korhonen
Broadcom Corporation
3151 Zanker Road
San Jose, CA 95134
USA
Email: jouni.nospam@gmail.com
Yu Kaneko
Toshiba
1 Komukai-Toshiba-cho, Saiwai-ku, Kasasaki-shi
Kanagawa, Japan
Email: yu1.kaneko@toshiba.co.jp
Subir Das
Applied Communication Sciences
150 Mount Airy Road, Basking Ridge
New Jersey, 07920, USA
Email: sdas@appcomsci.com
Yiyong Zha
Huawei Technologies
Email: zhayiyong@huawei.com
Balazs Varga
Ericsson
Konyves Kalman krt. 11/B
Budapest 1097
Hungary
Email: balazs.a.varga@ericsson.com
Janos Farkas
Ericsson
Konyves Kalman krt. 11/B
Budapest 1097
Hungary
Email: janos.farkas@ericsson.com
Franz-Josef Goetz
Siemens
Gleiwitzerstr. 555
Nurnberg 90475
Germany
Email: franz-josef.goetz@siemens.com
Juergen Schmitt
Siemens
Gleiwitzerstr. 555
Nurnberg 90475
Germany
Email: juergen.jues.schmitt@siemens.com
Xavier Vilajosana
Worldsensing
483 Arago
Barcelona, Catalonia 08013
Spain
Email: xvilajosana@worldsensing.com
Toktam Mahmoodi
King's College London
Strand, London WC2R 2LS
London, London WC2R 2LS
United Kingdom
Email: toktam.mahmoodi@kcl.ac.uk
Spiros Spirou
Intracom Telecom
19.7 km Markopoulou Ave.
Peania, Attiki 19002
Greece
Email: spis@intracom-telecom.com
Petra Vizarreta
Technical University of Munich, TUM
Maxvorstadt, ArcisstraBe 21
Munich, Germany 80333
Germany
Email: petra.vizarreta@lkn.ei.tum.de
Daniel Huang
ZTE Corporation, Inc.
No. 50 Software Avenue
Nanjing, Jiangsu 210012
P.R. China
Email: huang.guangping@zte.com.cn
Xuesong Geng
Huawei Technologies
Email: gengxuesong@huawei.com
Diego Dujovne
Universidad Diego Portales
Email: diego.dujovne@mail.udp.cl
Maik Seewald
Cisco Systems
Email: maseewal@cisco.com
 End of changes. 30 change blocks. 
213 lines changed or deleted 260 lines changed or added

This html diff was produced by rfcdiff 1.46. The latest version is available from http://tools.ietf.org/tools/rfcdiff/