draft-ietf-dime-qos-parameters-05.txt   draft-ietf-dime-qos-parameters-06.txt 
Diameter Maintenance and J. Korhonen, Ed. Diameter Maintenance and J. Korhonen, Ed.
Extensions (DIME) TeliaSonera Extensions (DIME) TeliaSonera
Internet-Draft H. Tschofenig Internet-Draft H. Tschofenig
Intended status: Standards Track Nokia Siemens Networks Intended status: Standards Track Nokia Siemens Networks
Expires: November 27, 2008 May 26, 2008 Expires: November 27, 2008 May 26, 2008
Quality of Service Parameters for Usage with the AAA Framework Quality of Service Parameters for Usage with the AAA Framework
draft-ietf-dime-qos-parameters-05.txt draft-ietf-dime-qos-parameters-06.txt
Status of this Memo Status of this Memo
By submitting this Internet-Draft, each author represents that any By submitting this Internet-Draft, each author represents that any
applicable patent or other IPR claims of which he or she is aware applicable patent or other IPR claims of which he or she is aware
have been or will be disclosed, and any of which he or she becomes have been or will be disclosed, and any of which he or she becomes
aware will be disclosed, in accordance with Section 6 of BCP 79. aware will be disclosed, in accordance with Section 6 of BCP 79.
Internet-Drafts are working documents of the Internet Engineering Internet-Drafts are working documents of the Internet Engineering
Task Force (IETF), its areas, and its working groups. Note that Task Force (IETF), its areas, and its working groups. Note that
skipping to change at page 2, line 7 skipping to change at page 2, line 7
This document defines a number of Quality of Service (QoS) parameters This document defines a number of Quality of Service (QoS) parameters
that can be reused for conveying QoS information within RADIUS and that can be reused for conveying QoS information within RADIUS and
Diameter. Diameter.
The payloads used to carry these QoS parameters are opaque for the The payloads used to carry these QoS parameters are opaque for the
AAA client and the AAA server itself and interpreted by the AAA client and the AAA server itself and interpreted by the
respective Resource Management Function. respective Resource Management Function.
Table of Contents Table of Contents
1. Introduction . . . . . . . . . . . . . . . . . . . . . . . . . 4 1. Introduction . . . . . . . . . . . . . . . . . . . . . . . . . 3
1.1. Traffic Model Parameter . . . . . . . . . . . . . . . . . 4 2. Terminology and Abbreviations . . . . . . . . . . . . . . . . 3
1.2. Constraints Parameters . . . . . . . . . . . . . . . . . . 4 3. Parameter Overview . . . . . . . . . . . . . . . . . . . . . . 3
1.3. Traffic Handling Directives . . . . . . . . . . . . . . . 5 3.1. Traffic Model Parameter . . . . . . . . . . . . . . . . . 3
1.4. Traffic Classes . . . . . . . . . . . . . . . . . . . . . 5 3.2. Constraints Parameters . . . . . . . . . . . . . . . . . . 3
2. Terminology and Abbreviations . . . . . . . . . . . . . . . . 6 3.3. Traffic Handling Directives . . . . . . . . . . . . . . . 5
3. AVP Definition . . . . . . . . . . . . . . . . . . . . . . . . 6 3.4. Traffic Classifiers . . . . . . . . . . . . . . . . . . . 5
3.1. TMOD-1 AVP . . . . . . . . . . . . . . . . . . . . . . . . 6 4. Parameter Encoding . . . . . . . . . . . . . . . . . . . . . . 5
3.1.1. TMOD-Rate-1 AVP . . . . . . . . . . . . . . . . . . . 6 4.1. Parameter Header . . . . . . . . . . . . . . . . . . . . . 5
3.1.2. TMOD-Size-1 AVP . . . . . . . . . . . . . . . . . . . 6 4.2. TMOD-1 Parameter . . . . . . . . . . . . . . . . . . . . . 5
3.1.3. Peak-Data-Rate-1 AVP . . . . . . . . . . . . . . . . . 6 4.3. TMOD-2 Parameter . . . . . . . . . . . . . . . . . . . . . 6
3.1.4. Minimum-Policed-Unit-1 AVP . . . . . . . . . . . . . . 6 4.4. Path Latency Parameter . . . . . . . . . . . . . . . . . . 7
3.2. TMOD-2 AVP . . . . . . . . . . . . . . . . . . . . . . . . 7 4.5. Path Jitter Parameter . . . . . . . . . . . . . . . . . . 7
3.2.1. TMOD-Rate-2 AVP . . . . . . . . . . . . . . . . . . . 7 4.6. Path PLR Parameter . . . . . . . . . . . . . . . . . . . . 8
3.2.2. TMOD-Size-2 AVP . . . . . . . . . . . . . . . . . . . 7 4.7. Path PER Parameter . . . . . . . . . . . . . . . . . . . . 8
3.2.3. Peak-Data-Rate-2 AVP . . . . . . . . . . . . . . . . . 7 4.8. Slack Term Parameter . . . . . . . . . . . . . . . . . . . 9
3.2.4. Minimum-Policed-Unit-2 AVP . . . . . . . . . . . . . . 7 4.9. Preemption Priority amp; Defending Priority Parameters . . 9
3.3. Path-Latency AVP . . . . . . . . . . . . . . . . . . . . . 7 4.10. Admission Priority Parameter . . . . . . . . . . . . . . . 10
3.4. Path-Jitter AVP . . . . . . . . . . . . . . . . . . . . . 8 4.11. Application-Level Resource Priority (ALRP) Parameter . . . 10
3.4.1. Path-Jitter-STAT1 AVP . . . . . . . . . . . . . . . . 8 4.12. Excess Treatment Parameter . . . . . . . . . . . . . . . . 11
3.4.2. Path-Jitter-STAT2 AVP . . . . . . . . . . . . . . . . 8 4.13. PHB Class Parameter . . . . . . . . . . . . . . . . . . . 12
3.4.3. Path-Jitter-STAT3 AVP . . . . . . . . . . . . . . . . 8 4.14. DSTE Class Type Parameter . . . . . . . . . . . . . . . . 13
3.4.4. Path-Jitter-STAT4 AVP . . . . . . . . . . . . . . . . 8 4.15. Y.1541 QoS Class Parameter . . . . . . . . . . . . . . . . 13
3.5. Path-PLR AVP . . . . . . . . . . . . . . . . . . . . . . . 8 5. Extensibility . . . . . . . . . . . . . . . . . . . . . . . . 15
3.6. Path-PER AVP . . . . . . . . . . . . . . . . . . . . . . . 9 6. IANA Considerations . . . . . . . . . . . . . . . . . . . . . 15
3.7. Slack-Term AVP . . . . . . . . . . . . . . . . . . . . . . 9 6.1. QoS Profile . . . . . . . . . . . . . . . . . . . . . . . 16
3.8. Priority AVP . . . . . . . . . . . . . . . . . . . . . . . 9 6.2. Parameter ID . . . . . . . . . . . . . . . . . . . . . . . 16
3.8.1. Preemption-Priority AVP . . . . . . . . . . . . . . . 9 6.3. Excess Treatment Parameter . . . . . . . . . . . . . . . . 17
3.8.2. Defending-Priority AVP . . . . . . . . . . . . . . . . 9 6.4. DSTE Class Type Parameter . . . . . . . . . . . . . . . . 17
3.9. Admission-Priority AVP . . . . . . . . . . . . . . . . . . 9 6.5. Y.1541 QoS Class Parameter . . . . . . . . . . . . . . . . 18
3.10. ALRP AVP . . . . . . . . . . . . . . . . . . . . . . . . . 10 7. Security Considerations . . . . . . . . . . . . . . . . . . . 18
3.10.1. ALRP-Namespace AVP . . . . . . . . . . . . . . . . . . 10 8. Acknowledgements . . . . . . . . . . . . . . . . . . . . . . . 18
3.10.2. ALRP-Priority AVP . . . . . . . . . . . . . . . . . . 10 9. References . . . . . . . . . . . . . . . . . . . . . . . . . . 19
3.11. Excess-Treatment AVP . . . . . . . . . . . . . . . . . . . 10 9.1. Normative References . . . . . . . . . . . . . . . . . . . 19
3.11.1. Excess-Treatment-Value AVP . . . . . . . . . . . . . . 11 9.2. Informative References . . . . . . . . . . . . . . . . . . 20
3.11.2. Remark-Value AVP . . . . . . . . . . . . . . . . . . . 11 Authors' Addresses . . . . . . . . . . . . . . . . . . . . . . . . 20
3.11.3. PHB-Class AVP . . . . . . . . . . . . . . . . . . . . 12 Intellectual Property and Copyright Statements . . . . . . . . . . 22
3.11.4. DSTE-Class-Type AVP . . . . . . . . . . . . . . . . . 13
3.11.5. Y.1541-QoS-Class AVP . . . . . . . . . . . . . . . . . 13
4. Extensibility . . . . . . . . . . . . . . . . . . . . . . . . 14
5. IANA Considerations . . . . . . . . . . . . . . . . . . . . . 15
5.1. QoS Profile . . . . . . . . . . . . . . . . . . . . . . . 15
5.2. AVP Allocations . . . . . . . . . . . . . . . . . . . . . 16
5.3. Excess-Treatment AVP . . . . . . . . . . . . . . . . . . . 16
5.4. DSTE-Class-Type AVP . . . . . . . . . . . . . . . . . . . 16
5.5. Y.1541-QoS-Class AVP . . . . . . . . . . . . . . . . . . . 16
6. Security Considerations . . . . . . . . . . . . . . . . . . . 17
7. Acknowledgements . . . . . . . . . . . . . . . . . . . . . . . 17
8. References . . . . . . . . . . . . . . . . . . . . . . . . . . 17
8.1. Normative References . . . . . . . . . . . . . . . . . . . 17
8.2. Informative References . . . . . . . . . . . . . . . . . . 18
Authors' Addresses . . . . . . . . . . . . . . . . . . . . . . . . 19
Intellectual Property and Copyright Statements . . . . . . . . . . 20
1. Introduction 1. Introduction
This document defines a number of Quality of Service (QoS) parameters This document defines a number of Quality of Service (QoS) parameters
that can be reused for conveying QoS information within RADIUS and that can be reused for conveying QoS information within RADIUS and
Diameter. Diameter.
The subsequent section give an overview of the parameters defined by The payloads used to carry these QoS parameters are opaque for the
this document. AAA client and the AAA server itself and interpreted by the
respective Resource Management Function.
1.1. Traffic Model Parameter 2. Terminology and Abbreviations
The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",
"SHOULD", "SHOULD NOT", "RECOMMENDED", "MAY", and "OPTIONAL" in this
document are to be interpreted as described in RFC2119 [RFC2119].
3. Parameter Overview
3.1. Traffic Model Parameter
The Traffic Model (TMOD) parameter is a container consisting of four The Traffic Model (TMOD) parameter is a container consisting of four
sub-parameters: sub-parameters:
o rate (r) o rate (r)
o bucket size (b) o bucket size (b)
o peak rate (p) o peak rate (p)
o minimum policed unit (m) o minimum policed unit (m)
The TMOD parameter is a mathematically complete way to describe the All four sub-parameters MUST be included in the TMOD parameter. The
TMOD parameter is a mathematically complete way to describe the
traffic source. If, for example, TMOD is set to specify bandwidth traffic source. If, for example, TMOD is set to specify bandwidth
only, then set r = peak rate = p, b = large, m = large. As another only, then set r = peak rate = p, b = large, m = large. As another
example if TMOD is set for TCP traffic, then set r = average rate, b example if TMOD is set for TCP traffic, then set r = average rate, b
= large, p = large. = large, p = large.
1.2. Constraints Parameters 3.2. Constraints Parameters
<Path Latency>, <Path Jitter>, <Path PLR>, and <Path PER> are QoS <Path Latency>, <Path Jitter>, <Path PLR>, and <Path PER> are QoS
parameters describing the desired path latency, path jitter and path parameters describing the desired path latency, path jitter and path
bit error rate respectively. bit error rate respectively.
The <Path Latency> parameter refers to the accumulated latency of the The <Path Latency> parameter refers to the accumulated latency of the
packet forwarding process associated with each QoS aware node along packet forwarding process associated with each QoS aware node along
the path, where the latency is defined to be the mean packet delay the path, where the latency is defined to be the mean packet delay
added by each such node. This delay results from speed-of-light added by each such node. This delay results from speed-of-light
propagation delay, from packet processing limitations, or both. The propagation delay, from packet processing limitations, or both. The
skipping to change at page 4, line 41 skipping to change at page 4, line 4
<Path Latency>, <Path Jitter>, <Path PLR>, and <Path PER> are QoS <Path Latency>, <Path Jitter>, <Path PLR>, and <Path PER> are QoS
parameters describing the desired path latency, path jitter and path parameters describing the desired path latency, path jitter and path
bit error rate respectively. bit error rate respectively.
The <Path Latency> parameter refers to the accumulated latency of the The <Path Latency> parameter refers to the accumulated latency of the
packet forwarding process associated with each QoS aware node along packet forwarding process associated with each QoS aware node along
the path, where the latency is defined to be the mean packet delay the path, where the latency is defined to be the mean packet delay
added by each such node. This delay results from speed-of-light added by each such node. This delay results from speed-of-light
propagation delay, from packet processing limitations, or both. The propagation delay, from packet processing limitations, or both. The
mean delay reflects the variable queuing delay that may be present. mean delay reflects the variable queuing delay that may be present.
The purpose of this parameter is to provide a minimum path latency The purpose of this parameter is to provide a minimum path latency
for use with services which provide estimates or bounds on additional for use with services which provide estimates or bounds on additional
path delay [RFC2212]. path delay [RFC2212].
The procedures for collecting path latency information are outside
the scope of this document.
The <Path Jitter> parameter refers to the accumulated jitter of the The <Path Jitter> parameter refers to the accumulated jitter of the
packet forwarding process associated with each QoS aware node along packet forwarding process associated with each QoS aware node along
the path, where the jitter is defined to be the nominal jitter added the path, where the jitter is defined to be the nominal jitter added
by each such node. IP packet jitter, or delay variation, is defined by each such node. IP packet jitter, or delay variation, is defined
in Section 3.4 of RFC 3393 [RFC3393], (Type-P-One-way-ipdv), and in Section 3.4 of RFC 3393 [RFC3393], (Type-P-One-way-ipdv), and
where the selection function includes the packet with minimum delay where the selection function includes the packet with minimum delay
such that the distribution is equivalent to 2-point delay variation such that the distribution is equivalent to 2-point delay variation
in [Y.1540]. The suggested evaluation interval is 1 minute. This in [Y.1540]. The suggested evaluation interval is 1 minute. This
jitter results from packet processing limitations, and includes any jitter results from packet processing limitations, and includes any
variable queuing delay which may be present. The purpose of this variable queuing delay which may be present. The purpose of this
skipping to change at page 5, line 36 skipping to change at page 5, line 5
flow compared with the <Defending Priority> of previously admitted flow compared with the <Defending Priority> of previously admitted
flows. Once a flow is admitted, the preemption priority becomes flows. Once a flow is admitted, the preemption priority becomes
irrelevant. The <Defending Priority> parameter is used to compare irrelevant. The <Defending Priority> parameter is used to compare
with the preemption priority of new flows. For any specific flow, with the preemption priority of new flows. For any specific flow,
its preemption priority MUST always be less than or equal to the its preemption priority MUST always be less than or equal to the
defending priority. <Admission Priority> and <RPH Priority> provide defending priority. <Admission Priority> and <RPH Priority> provide
an essential way to differentiate flows for emergency services, ETS, an essential way to differentiate flows for emergency services, ETS,
E911, etc., and assign them a higher admission priority than normal E911, etc., and assign them a higher admission priority than normal
priority flows and best-effort priority flows. priority flows and best-effort priority flows.
1.3. Traffic Handling Directives 3.3. Traffic Handling Directives
The <Excess Treatment< parameter describes how a QoS aware node will The <Excess Treatment> parameter describes how a QoS aware node will
process excess traffic, that is, out-of-profile traffic. Excess process excess traffic, that is, out-of-profile traffic. Excess
traffic MAY be dropped, shaped and/or remarked. traffic MAY be dropped, shaped and/or remarked.
1.4. Traffic Classes 3.4. Traffic Classifiers
Resource reservations might refer to a packet processing with a Resource reservations might refer to a packet processing with a
particular DiffServ per-hop behavior (PHB) [RFC2475] or to a particular DiffServ per-hop behavior (PHB) [RFC2475] or to a
particular QoS class, e.g., Y.1541 QoS class or DiffServ-aware MPLS particular QoS class, e.g., Y.1541 QoS class or DiffServ-aware MPLS
traffic engineering (DSTE) class type [RFC3564], [RFC4124]. traffic engineering (DSTE) class type [RFC3564], [RFC4124].
2. Terminology and Abbreviations 4. Parameter Encoding
The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",
"SHOULD", "SHOULD NOT", "RECOMMENDED", "MAY", and "OPTIONAL" in this
document are to be interpreted as described in RFC2119 [RFC2119].
3. AVP Definition
3.1. TMOD-1 AVP 4.1. Parameter Header
The TMOD-1 AVP is obtained from [RFC2210] and [RFC2215]. The Each QoS parameter is encoded in TLV format.
structure of the AVP is as follows:
TMOD-1 ::= < AVP Header: TBD > 0 1 2 3
{ TMOD-Rate-1 } 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
{ TMOD-Size-1 } +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
{ Peak-Data-Rate-1 } |M|r|r|r| Parameter ID |r|r|r|r| Length |
{ Minimum-Policed-Unit-1 } +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
3.1.1. TMOD-Rate-1 AVP M Flag: When set indicates the subsequent parameter MUST be
interpreted. If the M flag is set and the parameter is not
understood then it leads to an error. If the M flag is not
set and then not understood then it can be ignored.
The TMOD-Rate-1 AVP (AVP Code TBD) is of type Float32 and contains The r bits are reserved.
the rate (r).
3.1.2. TMOD-Size-1 AVP Parameter ID: Assigned to each individual QoS parameter
The TMOD-Size-1 AVP (AVP Code TBD) is of type Float32 and contains 4.2. TMOD-1 Parameter
the bucket size (b).
3.1.3. Peak-Data-Rate-1 AVP <TMOD-1> = <r> <b> <p> <m> [RFC2210] , [RFC2215]
The Peak-Data-Rate-1 AVP (AVP Code TBD) is of type Float32 and The above notation means that the 4 <TMOD-1> sub-parameters must be
contains the peak rate (p). carried in the <TMOD-1> parameter. The coding for the <TMOD-1>
parameter is as follows:
3.1.4. Minimum-Policed-Unit-1 AVP 0 1 2 3
0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
|M|r|r|r| 1 |r|r|r|r| 4 |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| TMOD Rate-1 [r] (32-bit IEEE floating point number) |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| TMOD Size-1 [b] (32-bit IEEE floating point number) |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| Peak Data Rate-1 [p] (32-bit IEEE floating point number) |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| Minimum Policed Unit-1 [m] (32-bit unsigned integer) |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
The Minimum-Policed-Unit-1 AVP (AVP Code TBD) is of type Unsigned32 The <TMOD> parameters are represented by three floating point numbers
and contains the minimum policed unit (m). in single-precision IEEE floating point format followed by one 32-bit
integer in network byte order. The first floating point value is the
rate (r), the second floating point value is the bucket size (b), the
third floating point is the peak rate (p), and the first unsigned
integer is the minimum policed unit (m).
The values r, b, and p are represented as IEEE floating point values When r, b, and p terms are represented as IEEE floating point values,
and the sign bit MUST be zero (all values MUST be non-negative). the sign bit MUST be zero (all values MUST be non-negative).
Exponents less than 127 (i.e., 0) are prohibited. Exponents greater Exponents less than 127 (i.e., 0) are prohibited. Exponents greater
than 162 (i.e., positive 35) are discouraged, except for specifying a than 162 (i.e., positive 35) are discouraged, except for specifying a
peak rate of infinity. Infinity is represented with an exponent of peak rate of infinity. Infinity is represented with an exponent of
all ones (255) and a sign bit and mantissa of all zeroes. all ones (255) and a sign bit and mantissa of all zeroes.
3.2. TMOD-2 AVP 4.3. TMOD-2 Parameter
A description of the semantic of the parameter values can be found in A description of the semantic of the parameter values can be found in
[RFC2215]. The TMOD-2 AVP is useful in a DiffServ environment. The [RFC2215]. The <TMOD-2> parameter may be needed in a DiffServ
coding for the TMOD-2 AVP is as follows: environment. The coding for the <TMOD-2> parameter is as follows:
TMOD-2 ::= < AVP Header: TBD >
{ TMOD-Rate-2 }
{ TMOD-Size-2 }
{ Peak-Data-Rate-2 }
{ Minimum-Policed-Unit-2 }
3.2.1. TMOD-Rate-2 AVP
The TMOD-Rate-2 AVP (AVP Code TBD) is of type Float32 and contains
the rate (r).
3.2.2. TMOD-Size-2 AVP
The TMOD-Size-2 AVP (AVP Code TBD) is of type Float32 and contains
the bucket size (b).
3.2.3. Peak-Data-Rate-2 AVP
The Peak-Data-Rate-2 AVP (AVP Code TBD) is of type Float32 and
contains the peak rate (p).
3.2.4. Minimum-Policed-Unit-2 AVP
The Minimum-Policed-Unit-2 AVP (AVP Code TBD) is of type Unsigned32
and contains the minimum policed unit (m).
The values r, b, and p are represented as IEEE floating point values 0 1 2 3
and the sign bit MUST be zero (all values MUST be non-negative). 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
|M|r|r|r| 2 |r|r|r|r| 4 |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| TMOD Rate-2 [r] (32-bit IEEE floating point number) |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| TMOD Size-2 [b] (32-bit IEEE floating point number) |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| Peak Data Rate-2 [p] (32-bit IEEE floating point number) |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| Minimum Policed Unit-2 [m] (32-bit unsigned integer) |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
When r, b, and p terms are represented as IEEE floating point values,
the sign bit MUST be zero (all values MUST be non-negative).
Exponents less than 127 (i.e., 0) are prohibited. Exponents greater Exponents less than 127 (i.e., 0) are prohibited. Exponents greater
than 162 (i.e., positive 35) are discouraged, except for specifying a than 162 (i.e., positive 35) are discouraged, except for specifying a
peak rate of infinity. Infinity is represented with an exponent of peak rate of infinity. Infinity is represented with an exponent of
all ones (255) and a sign bit and mantissa of all zeroes. all ones (255) and a sign bit and mantissa of all zeroes.
3.3. Path-Latency AVP 4.4. Path Latency Parameter
The semantic of the parameter values can be found in [RFC2210] and A description of the semantic of the parameter values can be found in
[RFC2215]. The Path-Latency AVP (AVP Code TBD) is of type Integer32. [RFC2210],[RFC2215]. The coding for the <Path Latency> parameter is
as follows:
The composition rule for the path latency is summation with a clamp 0 1 2 3
of (2**32 - 1) on the maximum value. The latencies are average 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
values reported in units of one microsecond. A system with +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
|M|r|r|r| 3 |r|r|r|r| 1 |
+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+
| Path Latency (32-bit integer) |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
The Path Latency is a single 32-bit integer in network byte order.
The composition rule for the <Path Latency> parameter is summation
with a clamp of (2**32 - 1) on the maximum value. The latencies are
average values reported in units of one microsecond. A system with
resolution less than one microsecond MUST set unused digits to zero. resolution less than one microsecond MUST set unused digits to zero.
The total latency added across all QoS aware nodes along the path can The total latency added across all QoS aware nodes along the path can
range as high as (2**32)-2. range as high as (2**32)-2.
3.4. Path-Jitter AVP 4.5. Path Jitter Parameter
The coding for the Path-Jitter AVP is as follows: The coding for the <Path Jitter> parameter is as follows:
Path-Jitter ::= < AVP Header: TBD > 0 1 2 3
{ Path-Jitter-STAT1 } 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
{ Path-Jitter-STAT2 } +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
{ Path-Jitter-STAT3 } |M|r|r|r| 4 |r|r|r|r| 4 |
{ Path-Jitter-STAT4 } +---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+
| Path Jitter STAT1(variance) (32-bit integer) |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| Path Jitter STAT2(99.9%-ile) (32-bit integer) |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| Path Jitter STAT3(minimum Latency) (32-bit integer) |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| Path Jitter STAT4(Reserved) (32-bit integer) |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
3.4.1. Path-Jitter-STAT1 AVP The Path Jitter is a set of four 32-bit integers in network byte
order. The Path Jitter parameter is the combination of four
statistics describing the Jitter distribution with a clamp of (2**32
- 1) on the maximum of each value. The jitter STATs are reported in
units of one microsecond.
The Path-Jitter-STAT1 AVP (AVP Code TBD) is of type Integer32 and 4.6. Path PLR Parameter
contains the variance.
3.4.2. Path-Jitter-STAT2 AVP The coding for the <Path PLR> parameter is as follows:
The Path-Jitter-STAT2 AVP (AVP Code TBD) is of type Integer32 and 0 1 2 3
contains the 99.9%-ile. 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
|M|r|r|r| 5 |r|r|r|r| 1 |
+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+
| Path Packet Loss Ratio (32-bit floating point) |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
3.4.3. Path-Jitter-STAT3 AVP The Path PLR is a single 32-bit single precision IEEE floating point
number in network byte order. The PLRs are reported in units of
10^-11. A system with resolution less than one microsecond MUST set
unused digits to zero. The total PLR added across all QoS aware
nodes can range as high as 10^-1.
The Path-Jitter-STAT3 AVP (AVP Code TBD) is of type Integer32 and 4.7. Path PER Parameter
contains the minimum latency.
3.4.4. Path-Jitter-STAT4 AVP The coding for the <Path PLR> parameter is as follows:
The Path-Jitter-STAT4 AVP (AVP Code TBD) is of type Integer32 and is 0 1 2 3
reserved for future use. 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
|M|r|r|r| 6 |r|r|r|r| 1 |
+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+
| Path Packet Error Ratio (32-bit floating point) |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
The Path-Jitter AVP is the combination of four statistics describing The Path PER is a single 32-bit single precision IEEE floating point
the jitter distribution with a clamp of (2**32 - 1) on the maximum of number in network byte order. The PERs are reported in units of
each value. The jitter STATs are reported in units of one 10^-11. A system with resolution less than one microsecond MUST set
microsecond. unused digits to zero. The total PER added across all QoS aware
nodes can range as high as 10^-1.
3.5. Path-PLR AVP 4.8. Slack Term Parameter
The Path-PLR AVP (AVP Code TBD) is of type Float32 and contains the A description of the semantic of the parameter values can be found in
path packet loss ratio. The PLRs are reported in units of 10^-11. A [RFC2212], [RFC2215]. The coding for the <Path PLR> parameter is as
system with resolution less than one microsecond MUST set unused follows:
digits to zero. The total PLR added across all QoS aware nodes can
range as high as 10^-1.
3.6. Path-PER AVP 0 1 2 3
0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
|M|r|r|r| 7 |r|r|r|r| 1 |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| Slack Term [S] (32-bit integer) |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
The Path-PER AVP (AVP Code TBD) is of type Float32 and contains the The Slack Term parameter S is a 32-bit integer value in network byte
path packet error ratio. The PERs are reported in units of 10^-11. order and is measured in microseconds. S is represented as a 32-bit
A system with resolution less than one microsecond MUST set unused integer. Its value can range from 0 to (2**32)-1 microseconds.
digits to zero. The total PER added across all QoS aware nodes can
range as high as 10^-1.
3.7. Slack-Term AVP 4.9. Preemption Priority amp; Defending Priority Parameters
The Slack-Term AVP (AVP Code TBD) is of type Integer32 and its A description of the semantic of the parameter values can be found in
semantic can be found in [RFC2212] and [RFC2215]. The Slack-Term AVP [RFC3181].
contains values measured in microseconds and its value can range from
0 to (2**32)-1 microseconds.
3.8. Priority AVP The coding for the <Preemption Priority> & <Defending Priority> sub-
parameters is as follows:
The Priority AVP is a grouped AVP consisting of two AVPs, the 0 1 2 3
Preemption-Priority and the Defending-Priority AVP. A description of 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
the semantic can be found in [RFC3181]. +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
|M|r|r|r| 8 |r|r|r|r| 1 |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| Preemption Priority | Defending Priority |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
Priority ::= < AVP Header: TBD > Preemption Priority: The priority of the new flow compared with the
{ Preemption-Priority } defending priority of previously admitted flows. Higher values
{ Defending-Priority } represent higher priority.
3.8.1. Preemption-Priority AVP Defending Priority: Once a flow is admitted, the preemption priority
becomes irrelevant. Instead, its defending priority is used to
compare with the preemption priority of new flows.
The Preemption-Priority AVP (AVP Code TBD) is of type Unsigned32 and As specified in [RFC3181], <Preemption Priority> & <Defending
it indicates the priority of the new flow compared with the defending Priority> are 16-bit integer values. They are represented in network
priority of previously admitted flows. Higher values represent byte order.
higher priority.
3.8.2. Defending-Priority AVP 4.10. Admission Priority Parameter
The Defending-Priority AVP (AVP Code TBD) is of type Unsigned32. The coding for the <Admission Priority> parameter is as follows:
Once a flow is admitted, the preemption priority becomes irrelevant.
Instead, its defending priority is used to compare with the
preemption priority of new flows.
3.9. Admission-Priority AVP 0 1 2 3
0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
|M|r|r|r| 9 |r|r|r|r| 1 |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| Admis.Priority| (Reserved) |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
The Admission-Priority AVP (AVP Code TBD) is of type Unsigned32. The 'Admis.Priority' field is a 8 bit unsigned integer in network
byte order.
The admission control priority of the flow, in terms of access to The admission control priority of the flow, in terms of access to
network bandwidth in order to provide higher probability of call network bandwidth in order to provide higher probability of call
completion to selected flows. Higher values represent higher completion to selected flows. Higher values represent higher
priority. A given admission priority is encoded in this information priority. A given Admission Priority is encoded in this information
element using the same value as when encoded in the Admission- element using the same value as when encoded in the Admission
Priority AVP defined in Section 6.2.9 of [I-D.ietf-nsis-qspec], or in Priority parameter defined in Section 6.2.9 of [I-D.ietf-nsis-qspec],
the Admission Priority parameter defined in Section 3.1 of or in the Admission Priority parameter defined in Section 3.1 of
[I-D.ietf-tsvwg-emergency-rsvp]. In other words, a given value [I-D.ietf-tsvwg-emergency-rsvp]. In other words, a given value
inside the Admission-Priority AVP, inside the [I-D.ietf-nsis-qspec] inside the Admission Priority information element defined in the
admission priority parameter or inside the present document, inside the [I-D.ietf-nsis-qspec] Admission Priority
[I-D.ietf-tsvwg-emergency-rsvp] admission priority parameter, refers parameter or inside the [I-D.ietf-tsvwg-emergency-rsvp] Admission
to the same admission priority. Priority parameter, refers to the same Admission Priority.
3.10. ALRP AVP
The Application-Level Resource Priority (ALRP) AVP is a grouped AVP 4.11. Application-Level Resource Priority (ALRP) Parameter
consisting of two AVPs, the ALRP-Namespace and the ALRP-Priority AVP.
A description of the semantic of the parameter values can be found in A description of the semantic of the parameter values can be found in
[RFC4412] and in [I-D.ietf-tsvwg-emergency-rsvp]. The coding for [RFC4412] and in [I-D.ietf-tsvwg-emergency-rsvp]. The coding for
parameter is as follows: parameter is as follows:
ALRP ::= < AVP Header: TBD > 0 1 2 3
{ ALRP-Namespace } 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
{ ALRP-Priority } +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
|M|r|r|r| 10 |r|r|r|r| 1 |
3.10.1. ALRP-Namespace AVP +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| ALRP Namespace | ALRP Priority | (Reserved) |
The ALRP-Namespace AVP (AVP Code TBD) is of type Unsigned32. +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
3.10.2. ALRP-Priority AVP
The Path-Jitter-STAT4 AVP (AVP Code TBD) is of type Unsigned32. The ALRP Namespace field is a 16 bits long unsigned integer in
network byte order and the ALRP Priority field is an 8 bit long
unsigned integer in network byte order containing the specific
priority value.
[RFC4412] defines a resource priority header and established the [RFC4412] defines a resource priority header and established the
initial registry; that registry was later extended by initial registry; that registry was later extended by
[I-D.ietf-tsvwg-emergency-rsvp]. [I-D.ietf-tsvwg-emergency-rsvp].
3.11. Excess-Treatment AVP 4.12. Excess Treatment Parameter
The Excess-Treatment AVP is a grouped AVP consisting of two AVPs, the
Treatment and the Remark-Value AVP.
The coding for the Excess-Treatment AVP is as follows:
Excess-Treatment ::= < AVP Header: TBD > The coding for the <Excess Treatment> parameter is as follows:
{ Excess-Treatment-Value }
[ Remark-Value ]
3.11.1. Excess-Treatment-Value AVP 0 1 2 3
0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
|M|r|r|r| 11 |r|r|r|r| 1 |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| Excess Trtmnt | Remark Value | Reserved |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
The Excess-Treatment-Value AVP (AVP Code TBD) is of type Enumerated Excess Treatment (8 bit unsigned integer value in network byte
and indicates how a QoS aware node should process out-of-profile order): Indicates how the QoS aware node should process out-of-
traffic. The following values are currently defined: profile traffic, that is, traffic not covered by the <Traffic>
parameter. Allowed values are as follows:
0: drop 0: drop
1: shape 1: shape
2: remark 2: remark
3: no metering or policing is permitted 3: no metering or policing is permitted
The default treatment in case that none is specified is that there The default excess treatment in case that none is specified is that
are no guarantees to excess traffic, i.e., a QoS aware node can do there are no guarantees to excess traffic, i.e., a QoS aware node can
what it finds suitable. do what it finds suitable.
When the treatment is set to 'drop', all marked traffic MUST be When excess treatment is set to 'drop', all marked traffic MUST be
dropped by a QoS aware node. dropped by a QoS aware node.
When the treatment is set to 'shape', it is expected that QoS When excess treatment is set to 'shape', it is expected that the QoS
parameters conveyed as part of QoS-Desired are used to reshape the Desired object carries a TMOD parameter. Excess traffic is to be
traffic (for example a TMOD parameter indicated as QoS desired). shaped to this TMOD. When the shaping causes unbounded queue growth
When the shaping causes unbounded queue growth at the shaper traffic at the shaper traffic can be dropped.
can be dropped.
When the treatment is set to 'remark', the excess treatment parameter
MUST carry the remark value. For example, packets may be remarked to
drop remarked to pertain to a particular QoS class. In the latter
case, remarking relates to a DiffServ-type model, where packets
arrive marked as belonging to a certain QoS class, and when they are
identified as excess, they should then be remarked to a different QoS
Class. The Remark-Value AVP carries the information used for re-
marking.
If 'no metering or policing is permitted' is indicated, the QoS aware When excess treatment is set to 'remark', the excess treatment
node should accept the treatment set by the sender with special care parameter MUST carry the remark value. For example, packets may be
so that excess traffic should not cause a problem. To request the remarked to drop remarked to pertain to a particular QoS class. In
Null Meter [RFC3290] is especially strong, and should be used with the latter case, remarking relates to a DiffServ-type model, where
caution. packets arrive marked as belonging to a certain QoS class, and when
they are identified as excess, they should then be remarked to a
different QoS Class.
3.11.2. Remark-Value AVP If 'no metering or policing is permitted' is signaled, the QoS aware
node should accept the excess treatment parameter set by the sender
with special care so that excess traffic should not cause a problem.
To request the Null Meter [RFC3290] is especially strong, and should
be used with caution.
The Remark-Value AVP (AVP Code TBD) is of type Unsigned32 and The Remark Value is an 8 bit unsigned integer value in network byte
contains the DSCP value the excess traffic should be remarked to. order.
3.11.3. PHB-Class AVP 4.13. PHB Class Parameter
The PHB-Class AVP (AVP Code TBD) is of type OctetString and is two A description of the semantic of the parameter values can be found in
octets long. A description of the semantic of the parameter values [RFC3140]. The coding for the <PHB Class> parameter is as follows:
can be found in [RFC3140]. The coding for the values is as follows:
0 1 2 3 0 1 2 3
0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
|M|r|r|r| 12 |r|r|r|r| 1 |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| DSCP |0 0 0 0 0 0 0 0 0 0| (Reserved) | | DSCP |0 0 0 0 0 0 0 0 0 0| (Reserved) |
+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+ +---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+
As prescribed in [RFC3140], the encoding for a single PHB is the As prescribed in [RFC3140], the encoding for a single PHB is the
recommended DSCP value for that PHB, left-justified in the 16 bit recommended DSCP value for that PHB, left-justified in the 16 bit
field, with bits 6 through 15 set to zero. field, with bits 6 through 15 set to zero.
The encoding for a set of PHBs is the numerically smallest of the set The encoding for a set of PHBs is the numerically smallest of the set
of encodings for the various PHBs in the set, with bit 14 set to 1. of encodings for the various PHBs in the set, with bit 14 set to 1.
(Thus for the AF1x PHBs, the encoding is that of the AF11 PHB, with (Thus for the AF1x PHBs, the encoding is that of the AF11 PHB, with
skipping to change at page 13, line 13 skipping to change at page 13, line 26
Scheduling Class (i.e., use of PHBs from the set MUST NOT cause Scheduling Class (i.e., use of PHBs from the set MUST NOT cause
intra-microflow traffic reordering when different PHBs from the set intra-microflow traffic reordering when different PHBs from the set
are applied to traffic in the same microflow). The set of AF1x PHBs are applied to traffic in the same microflow). The set of AF1x PHBs
[RFC2597] is an example of a PHB Scheduling Class. Sets of PHBs that [RFC2597] is an example of a PHB Scheduling Class. Sets of PHBs that
do not constitute a PHB Scheduling Class can be identified by using do not constitute a PHB Scheduling Class can be identified by using
more than one PHBID. more than one PHBID.
The registries needed to use [RFC3140] already exist. Hence, no new The registries needed to use [RFC3140] already exist. Hence, no new
registry needs to be created for this purpose. registry needs to be created for this purpose.
3.11.4. DSTE-Class-Type AVP 4.14. DSTE Class Type Parameter
The DSTE-Class-Type AVP (AVP Code TBD) is of type Unsigned32. A A description of the semantic of the parameter values can be found in
description of the semantic of the parameter values can be found in [RFC4124]. The coding for the <DSTE Class Type> parameter is as
[RFC4124]. follows:
Currently, the values of alues currently allowed are 0, 1, 2, 3, 4, 0 1 2 3
5, 6, 7. 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
|M|r|r|r| 13 |r|r|r|r| 1 |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
|DSTE Cls. Type | (Reserved) |
+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+
3.11.5. Y.1541-QoS-Class AVP DSTE Class Type: Indicates the DSTE class type. Values currently
allowed are 0, 1, 2, 3, 4, 5, 6, 7. A value of 255 (all 1's) means
that the <DSTE Class Type> parameter is not used.
The Y.1541-QoS-Class AVP (AVP Code TBD) is of type Unsigned32. A 4.15. Y.1541 QoS Class Parameter
description of the semantic of the parameter values can be found in
[Y.1541].
Currently, the allowed values of the Y.1541 QoS class are 0, 1, 2, 3, A description of the semantic of the parameter values can be found in
4, 5, 6, 7. [Y.1541]. The coding for the <Y.1541 QoS Class> parameter is as
follows:
0 1 2 3
0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
|M|r|r|r| 14 |r|r|r|r| 1 |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
|Y.1541 QoS Cls.| (Reserved) |
+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+
Y.1541 QoS Class: Indicates the Y.1541 QoS Class. Values currently
allowed are 0, 1, 2, 3, 4, 5, 6, 7. A value of 255 (all 1's) means
that the <Y.1541 QoS Class> parameter is not used.
Class 0: Class 0:
Mean delay <= 100 ms, delay variation <= 50 ms, loss ratio <= Mean delay <= 100 ms, delay variation <= 50 ms, loss ratio <=
10^-3. Real-time, highly interactive applications, sensitive to 10^-3. Real-time, highly interactive applications, sensitive to
jitter. Application examples include VoIP, Video Teleconference. jitter. Application examples include VoIP, Video Teleconference.
Class 1: Class 1:
Mean delay <= 400 ms, delay variation <= 50 ms, loss ratio <= Mean delay <= 400 ms, delay variation <= 50 ms, loss ratio <=
skipping to change at page 14, line 37 skipping to change at page 15, line 19
television transport, high-capacity TCP transfers, and TDM circuit television transport, high-capacity TCP transfers, and TDM circuit
emulation. emulation.
Class 7: Class 7:
Mean delay <= 400 ms, delay variation <= 50 ms, loss ratio <= Mean delay <= 400 ms, delay variation <= 50 ms, loss ratio <=
10^-5. Applications that are highly sensitive to loss, such as 10^-5. Applications that are highly sensitive to loss, such as
television transport, high-capacity TCP transfers, and TDM circuit television transport, high-capacity TCP transfers, and TDM circuit
emulation. emulation.
4. Extensibility 5. Extensibility
This document is designed with extensibility in mind given that This document is designed with extensibility in mind given that
different organizations and groups are used to define their own different organizations and groups are used to define their own
Quality of Service parameters. This document provides an initial QoS Quality of Service parameters. This document provides an initial QoS
profile with common set of QoS parameters. Ideally, these parameters profile with common set of parameters. Ideally, these parameters
should be used whenever possible but there are cases where additional should be used whenever possible but there are cases where additional
parameters might be needed, or where the parameters specified in this parameters might be needed, or where the parameters specified in this
document are used with a different semantic. In this case it is document are used with a different semantic. In this case it is
advisable to define a new QoS profile that may consist of new advisable to define a new QoS profile that may consist of new
parameters in addition to parameters defined in this document or an parameters in addition to parameters defined in this document or an
entirely different set of parameters. entirely different set of parameters.
To enable the definition of new QoS profiles a 8 octet registry is To enable the definition of new QoS profiles a 8 octet registry is
defined field that is represented by a 4-octet vendor and 4-octet defined field that is represented by a 4-octet vendor and 4-octet
specifier field. A QoS profile groups together a bunch of QoS specifier field. The vendor field indicates the type as either
parameters for usage in a specific environment. The vendor field standards-specified or vendor-specific. If the four octets of the
indicates the type as either standards-specified or vendor-specific. vendor field are 0x00000000, then the value is standards-specified
If the four octets of the vendor field are 0x00000000, then the value and the registry is maintained by IANA, and any other value
is standards-specified and the registry is maintained by IANA, and represents a vendor-specific Object Identifier (OID). IANA created
any other value represents a vendor-specific Object Identifier (OID). registry is split into two value ranges; one range uses the
IANA created registry is split into two value ranges; one range uses "Standards Action" and the second range uses "Specification Required"
the "Standards Action" and the second range uses "Specification allocation policy. The latter range is meant to be used by
Required" allocation policy. The latter range is meant to be used by
organizations outside the IETF. organizations outside the IETF.
5. IANA Considerations 6. IANA Considerations
This section defines the registries and initial codepoint This section defines the registries and initial codepoint
assignments, in accordance with BCP 26 RFC 2434 [RFC5226]. It also assignments, in accordance with BCP 26 RFC 5226 [RFC5226]. It also
defines the procedural requirements to be followed by IANA in defines the procedural requirements to be followed by IANA in
allocating new codepoints. allocating new codepoints.
IANA is requested to create the following registries listed in the IANA is requested to create the following registries listed in the
subsections below. subsections below.
5.1. QoS Profile 6.1. QoS Profile
The QoS Profile refers to a 64 bit long field that is represented by The QoS Profile refers to a 64 bit long field that is represented by
a 4-octet vendor and 4-octet specifier field. The vendor field a 4-octet vendor and 4-octet specifier field. The vendor field
indicates the type as either standards-specified or vendor-specific. indicates the type as either standards-specified or vendor-specific.
If the four octets of the vendor field are 0x00000000, then the value If the four octets of the vendor field are 0x00000000, then the value
is standards-specified and the registry is maintained by IANA, and is standards-specified and the registry is maintained by IANA, and
any other value represents a vendor-specific Object Identifier (OID). any other value represents a vendor-specific Object Identifier (OID).
The specifier field indicates the actual QoS profile. The vendor The specifier field indicates the actual QoS profile. The vendor
field 0x00000000 is reserved to indicate that the values in the field 0x00000000 is reserved to indicate that the values in the
skipping to change at page 16, line 6 skipping to change at page 16, line 36
For the IANA maintained QoS profiles the following allocation policy For the IANA maintained QoS profiles the following allocation policy
is defined: is defined:
1 to 511: Standards Action 1 to 511: Standards Action
512 to 4095: Specification Required 512 to 4095: Specification Required
Standards action is required to depreciate, delete, or modify Standards action is required to depreciate, delete, or modify
existing QoS profile values in the range of 0-511 and a specification existing QoS profile values in the range of 0-511 and a specification
is required to depreciate, delete, or modify existing QoS profile is required to depreciate, delete, or modify existing QoS profile
values in the range of 512-4095. values in the range of 512-4095.
5.2. AVP Allocations 6.2. Parameter ID
This specification assigns the values TBD1 to TBD2 from the AVP Code The Parameter ID refers to a 12 bit long field.
namespace defined in [RFC3588]. See Section 3 for the assignment of
the namespace in this specification.
5.3. Excess-Treatment AVP The following values are allocated by this specification.
(0): <TMOD-1>
(1): <TMOD-2>
(2): <Path Latency>
(3): <Path Jitter>
(4): <Path PLR>
(5): <Path PER>
(6): <Slack Term>
(7): <Preemption Priority> & <Defending Priority>
(8): <Admission Priority>
(9): <ALRP>
(10): <Excess Treatment>
(11): <PHB Class>
(12): <DSTE Class Type>
(13): <Y.1541 QoS Class>
The allocation policies for further values are as follows:
14-127: Standards Action
128-255: Private/Experimental Use
255-4095: Specification Required
A standards track document is required to depreciate, delete, or
modify existing Parameter IDs.
6.3. Excess Treatment Parameter
The Excess Treatment parameter refers to an 8 bit long field.
The following values are allocated by this specification: The following values are allocated by this specification:
Excess Treatment Value 0: drop Excess Treatment Value 0: drop
Excess Treatment Value 1: shape Excess Treatment Value 1: shape
Excess Treatment Value 2: remark Excess Treatment Value 2: remark
Excess Treatment Value 3: no metering or policing is permitted Excess Treatment Value 3: no metering or policing is permitted
Excess Treatment Values 4-63: Standards Action Excess Treatment Values 4-63: Standards Action
Excess Treatment Value 64-2^32-1: Reserved Excess Treatment Value 64-255: Reserved
5.4. DSTE-Class-Type AVP The 8 bit Remark Value allocation policies are as follows:
0-63: Specification Required
64-127: Private/Experimental Use
128-255: Reserved
6.4. DSTE Class Type Parameter
The DSTE Class Type parameter refers to an 8 bit long field.
The following values are allocated by this specification: The following values are allocated by this specification:
DSTE Class Type Value 0: DSTE Class Type 0 DSTE Class Type Value 0: DSTE Class Type 0
DSTE Class Type Value 1: DSTE Class Type 1 DSTE Class Type Value 1: DSTE Class Type 1
DSTE Class Type Value 2: DSTE Class Type 2 DSTE Class Type Value 2: DSTE Class Type 2
DSTE Class Type Value 3: DSTE Class Type 3 DSTE Class Type Value 3: DSTE Class Type 3
DSTE Class Type Value 4: DSTE Class Type 4 DSTE Class Type Value 4: DSTE Class Type 4
DSTE Class Type Value 5: DSTE Class Type 5 DSTE Class Type Value 5: DSTE Class Type 5
DSTE Class Type Value 6: DSTE Class Type 6 DSTE Class Type Value 6: DSTE Class Type 6
DSTE Class Type Value 7: DSTE Class Type 7 DSTE Class Type Value 7: DSTE Class Type 7
DSTE Class Type Values 8-63: Standards Action DSTE Class Type Values 8-63: Standards Action
DSTE Class Type Values 64-2^32-1: Reserved DSTE Class Type Values 64-255: Reserved
5.5. Y.1541-QoS-Class AVP 6.5. Y.1541 QoS Class Parameter
The Y.1541 QoS Class parameter refers to an 8 bit long field.
The following values are allocated by this specification: The following values are allocated by this specification:
Y.1541 QoS Class Value 0: Y.1541 QoS Class 0 Y.1541 QoS Class Value 0: Y.1541 QoS Class 0
Y.1541 QoS Class Value 1: Y.1541 QoS Class 1 Y.1541 QoS Class Value 1: Y.1541 QoS Class 1
Y.1541 QoS Class Value 2: Y.1541 QoS Class 2 Y.1541 QoS Class Value 2: Y.1541 QoS Class 2
Y.1541 QoS Class Value 3: Y.1541 QoS Class 3 Y.1541 QoS Class Value 3: Y.1541 QoS Class 3
Y.1541 QoS Class Value 4: Y.1541 QoS Class 4 Y.1541 QoS Class Value 4: Y.1541 QoS Class 4
Y.1541 QoS Class Value 5: Y.1541 QoS Class 5 Y.1541 QoS Class Value 5: Y.1541 QoS Class 5
Y.1541 QoS Class Value 6: Y.1541 QoS Class 6 Y.1541 QoS Class Value 6: Y.1541 QoS Class 6
Y.1541 QoS Class Value 7: Y.1541 QoS Class 7 Y.1541 QoS Class Value 7: Y.1541 QoS Class 7
Y.1541 QoS Class Values 8-63: Standards Action Y.1541 QoS Class Values 8-63: Standards Action
Y.1541 QoS Class Values 64-2^32-1: Reserved Y.1541 QoS Class Values 64-255: Reserved
The values in the ALRP-Namespace and ALRP-Priority AV{ inside the The ALRP Namespace and ALRP Priority field inside the ALRP Parameter
ALRP AVP take their values from the registry created by [RFC4412] and take their values from the registry created by [RFC4412] and extended
extended with [I-D.ietf-tsvwg-emergency-rsvp] No additional actions with [I-D.ietf-tsvwg-emergency-rsvp] No additional actions are
are required by IANA by this specification. required by IANA by this specification.
6. Security Considerations 7. Security Considerations
This document does not raise any security concerns as it only defines This document does not raise any security concerns as it only defines
QoS parameters. QoS parameters.
7. Acknowledgements 8. Acknowledgements
The authors would like to thank the NSIS QSPEC [I-D.ietf-nsis-qspec] The authors would like to thank the NSIS QSPEC [I-D.ietf-nsis-qspec]
authors (Cornelia Kappler, Jerry Ash, Attila Bader, Dave Oran), the authors (Cornelia Kappler, Jerry Ash, Attila Bader, Dave Oran), the
NSIS working group chairs (John Loughney and Martin Stiemerling) and NSIS working group chairs (John Loughney and Martin Stiemerling) and
the former Transport Area Directors (Allison Mankin, Jon Peterson) the former Transport Area Directors (Allison Mankin, Jon Peterson)
for their help. for their help.
We would like to thank Francois Le Faucheur, John Loughney, Martin We would like to thank Francois Le Faucheur, John Loughney, Martin
Stiemerling, Dave Oran, An Nguyen, Ken Carlberg, James Polk, Lars Stiemerling, Dave Oran, An Nguyen, Ken Carlberg, James Polk, Lars
Eggert, and Magnus Westerlund for their help with resolving problems Eggert, and Magnus Westerlund for their help with resolving problems
regarding the Admission Priority and the ALRP parameter. regarding the Admission Priority and the ALRP parameter.
8. References 9. References
8.1. Normative References 9.1. Normative References
[I-D.ietf-tsvwg-emergency-rsvp] [I-D.ietf-tsvwg-emergency-rsvp]
Faucheur, F., Polk, J., and K. Carlberg, "Resource Faucheur, F., Polk, J., and K. Carlberg, "Resource
ReSerVation Protovol (RSVP) Extensions for Emergency ReSerVation Protovol (RSVP) Extensions for Emergency
Services", draft-ietf-tsvwg-emergency-rsvp-08 (work in Services", draft-ietf-tsvwg-emergency-rsvp-08 (work in
progress), May 2008. progress), May 2008.
[RFC2119] Bradner, S., "Key words for use in RFCs to Indicate [RFC2119] Bradner, S., "Key words for use in RFCs to Indicate
Requirement Levels", BCP 14, RFC 2119, March 1997. Requirement Levels", BCP 14, RFC 2119, March 1997.
skipping to change at page 18, line 24 skipping to change at page 19, line 50
"Per Hop Behavior Identification Codes", RFC 3140, "Per Hop Behavior Identification Codes", RFC 3140,
June 2001. June 2001.
[RFC3181] Herzog, S., "Signaled Preemption Priority Policy Element", [RFC3181] Herzog, S., "Signaled Preemption Priority Policy Element",
RFC 3181, October 2001. RFC 3181, October 2001.
[RFC3393] Demichelis, C. and P. Chimento, "IP Packet Delay Variation [RFC3393] Demichelis, C. and P. Chimento, "IP Packet Delay Variation
Metric for IP Performance Metrics (IPPM)", RFC 3393, Metric for IP Performance Metrics (IPPM)", RFC 3393,
November 2002. November 2002.
[RFC3588] Calhoun, P., Loughney, J., Guttman, E., Zorn, G., and J.
Arkko, "Diameter Base Protocol", RFC 3588, September 2003.
[RFC4124] Le Faucheur, F., "Protocol Extensions for Support of [RFC4124] Le Faucheur, F., "Protocol Extensions for Support of
Diffserv-aware MPLS Traffic Engineering", RFC 4124, Diffserv-aware MPLS Traffic Engineering", RFC 4124,
June 2005. June 2005.
[RFC4412] Schulzrinne, H. and J. Polk, "Communications Resource [RFC4412] Schulzrinne, H. and J. Polk, "Communications Resource
Priority for the Session Initiation Protocol (SIP)", Priority for the Session Initiation Protocol (SIP)",
RFC 4412, February 2006. RFC 4412, February 2006.
[Y.1541] "Network Performance Objectives for IP-Based Services", , [Y.1541] "Network Performance Objectives for IP-Based Services", ,
2006. 2006.
[Y.1571] "Admission Control Priority Levels in Next Generation [Y.1571] "Admission Control Priority Levels in Next Generation
Networks", , July 2006. Networks", , July 2006.
8.2. Informative References 9.2. Informative References
[I-D.ietf-nsis-qspec] [I-D.ietf-nsis-qspec]
Ash, G., Bader, A., Kappler, C., and D. Oran, "QoS NSLP Ash, G., Bader, A., Kappler, C., and D. Oran, "QoS NSLP
QSPEC Template", draft-ietf-nsis-qspec-20 (work in QSPEC Template", draft-ietf-nsis-qspec-20 (work in
progress), April 2008. progress), April 2008.
[RFC2475] Blake, S., Black, D., Carlson, M., Davies, E., Wang, Z., [RFC2475] Blake, S., Black, D., Carlson, M., Davies, E., Wang, Z.,
and W. Weiss, "An Architecture for Differentiated and W. Weiss, "An Architecture for Differentiated
Services", RFC 2475, December 1998. Services", RFC 2475, December 1998.
 End of changes. 102 change blocks. 
300 lines changed or deleted 384 lines changed or added

This html diff was produced by rfcdiff 1.35. The latest version is available from http://tools.ietf.org/tools/rfcdiff/