--- 1/draft-ietf-dkim-ssp-06.txt 2008-11-23 01:12:02.000000000 +0100 +++ 2/draft-ietf-dkim-ssp-07.txt 2008-11-23 01:12:02.000000000 +0100 @@ -1,23 +1,23 @@ Network Working Group E. Allman Internet-Draft Sendmail, Inc. Intended status: Standards Track J. Fenton -Expires: March 23, 2009 Cisco Systems, Inc. +Expires: May 26, 2009 Cisco Systems, Inc. M. Delany Yahoo! Inc. J. Levine Taughannock Networks - September 19, 2008 + November 22, 2008 - DKIM Author Domain Signing Practices (ADSP) - draft-ietf-dkim-ssp-06 +DomainKeys Identified Mail (DKIM) Author Domain Signing Practices (ADSP) + draft-ietf-dkim-ssp-07 Status of this Memo By submitting this Internet-Draft, each author represents that any applicable patent or other IPR claims of which he or she is aware have been or will be disclosed, and any of which he or she becomes aware will be disclosed, in accordance with Section 6 of BCP 79. Internet-Drafts are working documents of the Internet Engineering Task Force (IETF), its areas, and its working groups. Note that @@ -28,21 +28,21 @@ and may be updated, replaced, or obsoleted by other documents at any time. It is inappropriate to use Internet-Drafts as reference material or to cite them other than as "work in progress." The list of current Internet-Drafts can be accessed at http://www.ietf.org/ietf/1id-abstracts.txt. The list of Internet-Draft Shadow Directories can be accessed at http://www.ietf.org/shadow.html. - This Internet-Draft will expire on March 23, 2009. + This Internet-Draft will expire on May 26, 2009. Abstract DomainKeys Identified Mail (DKIM) defines a domain-level authentication framework for email to permit verification of the source and contents of messages. This document specifies an adjunct mechanism to aid in assessing messages that do not contain a DKIM signature for the domain used in the author's address. It defines a record that can advertise whether a domain signs its outgoing mail, and how other hosts can access that record. @@ -62,66 +62,71 @@ 3.1. ADSP Applicability . . . . . . . . . . . . . . . . . . . . 6 3.2. ADSP Usage . . . . . . . . . . . . . . . . . . . . . . . . 6 3.3. ADSP Results . . . . . . . . . . . . . . . . . . . . . . . 7 4. Detailed Description . . . . . . . . . . . . . . . . . . . . . 7 4.1. DNS Representation . . . . . . . . . . . . . . . . . . . . 7 4.2. Publication of ADSP Records . . . . . . . . . . . . . . . 8 4.3. ADSP Lookup Procedure . . . . . . . . . . . . . . . . . . 8 5. IANA Considerations . . . . . . . . . . . . . . . . . . . . . 10 5.1. ADSP Specification Tag Registry . . . . . . . . . . . . . 10 5.2. ADSP Outbound Signing Practices Registry . . . . . . . . . 10 - 6. Security Considerations . . . . . . . . . . . . . . . . . . . 10 + 6. Security Considerations . . . . . . . . . . . . . . . . . . . 11 6.1. ADSP Threat Model . . . . . . . . . . . . . . . . . . . . 11 - 6.2. DNS Attacks . . . . . . . . . . . . . . . . . . . . . . . 11 + 6.2. DNS Attacks . . . . . . . . . . . . . . . . . . . . . . . 12 6.3. DNS Wildcards . . . . . . . . . . . . . . . . . . . . . . 12 - 7. References . . . . . . . . . . . . . . . . . . . . . . . . . . 12 - 7.1. References - Normative . . . . . . . . . . . . . . . . . . 12 + 7. References . . . . . . . . . . . . . . . . . . . . . . . . . . 13 + 7.1. References - Normative . . . . . . . . . . . . . . . . . . 13 7.2. References - Informative . . . . . . . . . . . . . . . . . 13 - Appendix A. Usage Examples . . . . . . . . . . . . . . . . . . . 13 - A.1. Single Location Domains . . . . . . . . . . . . . . . . . 13 - A.2. Bulk Mailing Domains . . . . . . . . . . . . . . . . . . . 14 - A.3. Bulk Mailing Domains with Discardable Mail . . . . . . . . 14 - A.4. Third Party Senders . . . . . . . . . . . . . . . . . . . 14 - A.5. Domains with Independent Users and Liberal Use Policies . 15 - A.6. Non-email Domains . . . . . . . . . . . . . . . . . . . . 15 - Appendix B. Acknowledgements . . . . . . . . . . . . . . . . . . 15 - Appendix C. Change Log . . . . . . . . . . . . . . . . . . . . . 15 - C.1. Changes since -ietf-dkim-05 . . . . . . . . . . . . . . . 15 - C.2. Changes since -ietf-dkim-04 . . . . . . . . . . . . . . . 15 - C.3. Changes since -ietf-dkim-03 . . . . . . . . . . . . . . . 16 - C.4. Changes since -ietf-dkim-02 . . . . . . . . . . . . . . . 16 - C.5. Changes since -ietf-dkim-ssp-01 . . . . . . . . . . . . . 17 - C.6. Changes since -ietf-dkim-ssp-00 . . . . . . . . . . . . . 18 - C.7. Changes since -allman-ssp-02 . . . . . . . . . . . . . . . 19 - C.8. Changes since -allman-ssp-01 . . . . . . . . . . . . . . . 19 - C.9. Changes since -allman-ssp-00 . . . . . . . . . . . . . . . 19 - Authors' Addresses . . . . . . . . . . . . . . . . . . . . . . . . 20 - Intellectual Property and Copyright Statements . . . . . . . . . . 21 + Appendix A. Lookup Examples . . . . . . . . . . . . . . . . . . . 13 + A.1. Domain and ADSP exist . . . . . . . . . . . . . . . . . . 14 + A.2. Domain exists, ADSP does not exist . . . . . . . . . . . . 14 + A.3. Domain does not exist . . . . . . . . . . . . . . . . . . 14 + Appendix B. Usage Examples . . . . . . . . . . . . . . . . . . . 15 + B.1. Single Location Domains . . . . . . . . . . . . . . . . . 15 + B.2. Bulk Mailing Domains . . . . . . . . . . . . . . . . . . . 15 + B.3. Bulk Mailing Domains with Discardable Mail . . . . . . . . 16 + B.4. Third Party Senders . . . . . . . . . . . . . . . . . . . 16 + B.5. Domains with Independent Users and Liberal Use Policies . 16 + B.6. Non-email Domains . . . . . . . . . . . . . . . . . . . . 16 + Appendix C. Acknowledgements . . . . . . . . . . . . . . . . . . 17 + Appendix D. Change Log . . . . . . . . . . . . . . . . . . . . . 17 + D.1. Changes since -ietf-dkim-06 . . . . . . . . . . . . . . . 17 + D.2. Changes since -ietf-dkim-05 . . . . . . . . . . . . . . . 17 + D.3. Changes since -ietf-dkim-04 . . . . . . . . . . . . . . . 17 + D.4. Changes since -ietf-dkim-03 . . . . . . . . . . . . . . . 18 + D.5. Changes since -ietf-dkim-02 . . . . . . . . . . . . . . . 18 + D.6. Changes since -ietf-dkim-ssp-01 . . . . . . . . . . . . . 19 + D.7. Changes since -ietf-dkim-ssp-00 . . . . . . . . . . . . . 20 + D.8. Changes since -allman-ssp-02 . . . . . . . . . . . . . . . 21 + D.9. Changes since -allman-ssp-01 . . . . . . . . . . . . . . . 21 + D.10. Changes since -allman-ssp-00 . . . . . . . . . . . . . . . 21 + Authors' Addresses . . . . . . . . . . . . . . . . . . . . . . . . 22 + Intellectual Property and Copyright Statements . . . . . . . . . . 23 1. Introduction DomainKeys Identified Mail (DKIM) defines a mechanism by which email messages can be cryptographically signed, permitting a signing domain to claim responsibility for the introduction of a message into the mail stream. Message recipients can verify the signature by querying the signer's domain directly to retrieve the appropriate public key, and thereby confirm that the message was attested to by a party in possession of the private key for the signing domain. However, the legacy of the Internet is such that not all messages will be signed, and the absence of a signature on a message is not an a priori indication of forgery. In fact, during early phases of deployment it is very likely that most messages will remain unsigned. However, some domains might decide to sign all of their outgoing - mail, for example, to protect their brand names. It is desirable for - such domains to be able to advertise that fact to other hosts. This - is the topic of Author Domain Signing Practices (ADSP). + mail, for example, to protect their brand names. It might be + desirable for such domains to be able to advertise that fact to other + hosts. This is the topic of Author Domain Signing Practices (ADSP). Hosts implementing this specification can inquire what Author Signing Practices a domain advertises. This inquiry is called an Author Signing Practices check. The basic requirements for ADSP are given in [RFC5016]. This document refers extensively to [RFC4871] and assumes the reader is familiar with it. Requirements Notation: The key words "MUST", "MUST NOT", @@ -129,38 +134,38 @@ "RECOMMENDED", "MAY", and "OPTIONAL" in this document are to be interpreted as described in [RFC2119] 2. Language and Terminology 2.1. Terms Imported from DKIM Signatures Specification Some terminology used herein is derived directly from [RFC4871]. In several cases, references in that document to Sender have been changed to Author here, to emphasize the relationship to the Author - address(es) in the From: header field described in [RFC2822]. + address(es) in the From: header field described in [RFC5322]. Briefly, o A "Signer" is the agent that signs a message, as defined in section 2.1 of [RFC4871]. o A "Local-part" is the part of an address preceding the @ - character, as defined in [RFC2822] and used in [RFC4871]. + character, as defined in [RFC5322] and used in [RFC4871]. 2.2. Valid Signature A "Valid Signature" is any signature on a message which correctly verifies using the procedure described in section 6.1 of [RFC4871]. 2.3. Author Address An "Author Address" is an email address in the From header field of a - message [RFC2822]. If the From header field contains multiple + message [RFC5322]. If the From header field contains multiple addresses, the message has multiple Author Addresses. 2.4. Author Domain An "Author Domain" is everything to the right of the "@" in an Author Address (excluding the "@" itself). 2.5. Alleged Author An "Alleged Author" is an Author Address of a message; it is @@ -175,21 +180,21 @@ 2.7. Author Signature An "Author Signature" is any Valid Signature where the identity of the user or agent on behalf of which the message is signed (listed in the "i=" tag or its default value from the "d=" tag) matches an Author Address in the message. When the identity of the user or agent includes a Local-part, the identities match if the Local-parts are the same string, and the domains are the same string. Otherwise, the identities match if the domains are the same string. Following - [RFC2821], Local-part comparisons are case sensitive, domain + [RFC5321], Local-part comparisons are case sensitive, but domain comparisons are case insensitive. For example, if a message has a Valid Signature, with the DKIM- Signature field containing "i=a@domain.example", then domain.example is asserting that it takes responsibility for the message. If the message's From: field contains the address "b@domain.example" and an ADSP query produces a "dkim=all" or "dkim=discardable" result, that would mean that the message does not have a valid Author Signature. Even though the message is signed by the same domain, it fails to satisfy ADSP. @@ -209,20 +214,28 @@ ADSP as defined in this document is bound to DNS. For this reason, ADSP is applicable only to Author Domains with appropriate DNS records (see Note below). The handling of other Author Domains is outside the scope of this document. However, attackers may use such domain names in a deliberate attempt to sidestep an organization's ADSP policy statements. It is up to the ADSP checker implementation to return an appropriate error result for Author Domains outside the scope of ADSP. + ADSP applies to specific domains, not domain subtrees. If, for + example, an Author Address were user@domain.example, the Author + Domain would be domain.example, and the applicable ADSP record would + be at _adsp._domainkey.domain.example. An Author Address in a + subdomain such as user@sub.domain.example would have a different ADSP + record at _adsp._domainkey.sub.domain.example. ADSP makes no + connection between a domain and its parent or child domains. + Note: The results from DNS queries that are intended to validate a domain name unavoidably approximate the set of Author Domains that can appear in legitimate email. For example, a DNS A record could belong to a device that does not even have an email implementation. It is up to the checker to decide what degree of approximation is acceptable. 3.2. ADSP Usage Depending on the Author Domain(s) and the signatures in a message, a @@ -241,89 +254,88 @@ Author Domain, the receiver can use both the Signature and the ADSP result in its evaluation of the message. 3.3. ADSP Results An ADSP lookup for an Author Address produces one of four possible results: o Messages from this domain might or might not have an author signature. This is the default if the domain exists in the DNS - but no record is found. + but no ADSP record is found. o All messages from this domain are signed. - o All messages from this domain are signed and discardable. + o All messages from this domain are signed and discardable, i.e., if + a message arrives without a valid Author Signature, the domain + encourages the recipient(s) to discard it. - o This domain is out of scope. + o This domain is out of scope, i.e., the domain does not exist in + the DNS. + + An ADSP lookup could terminate without producing any result if a DNS + lookup results in a temporary failure. 4. Detailed Description 4.1. DNS Representation ADSP records are published using the DNS TXT resource record type. The RDATA for ADSP resource records is textual in format, with specific syntax and semantics relating to their role in describing ADSP. The "Tag=Value List" syntax described in section 3.2 of [RFC4871] is used. Records not in compliance with that syntax or the syntax of individual tags described in Section 4.3 MUST be ignored (considered equivalent to a NODATA result) for purposes of ADSP, although they MAY cause the logging of warning messages via an appropriate system logging mechanism. If the RDATA contains multiple character strings, the strings are logically concatenated with no delimiters between the strings. - The ADSP record for a domain is published at a location in the - domain's DNS hierarchy prefixed by _adsp._domainkey.; e.g., the ADSP - record for example.com would be a TXT record that is published at - "_adsp._domainkey.example.com". A domain MUST NOT publish more than - one ADSP record; the semantics of an ADSP lookup that returns - multiple ADSP records for a single domain are undefined. (Note that - example.com and mail.example.com are different domains.) - - ADSP records MUST NOT be published at any location other than - the_adsp._domainkey subdomain of the domain for which they are - expressing signing practices. In particular, domains MUST NOT - publish ADSP records with wildcard names. Wildcards within a domain - publishing ADSP records pose a particular problem, as discussed in - more detail in Section 6.3. + Note: ADSP changes the "Tag=Value List" syntax from [RFC4871] to + use WSP rather than FWS in its DNS records. Domains MUST NOT + publish ADSP records with wildcard names. Wildcards within a + domain publishing ADSP records pose a particular problem, as + discussed in more detail in Section 6.3. 4.2. Publication of ADSP Records ADSP is intended to apply to all mail sent using the domain name string of an Alleged Author. 4.2.1. Record Syntax ADSP records use the "tag=value" syntax described in section 3.2 of [RFC4871]. Every ADSP record MUST start with an outbound signing practices tag, so the first four characters of the record are lower - case "dkim". + case "dkim", followed by optional whitespace and "=". . Tags used in ADSP records are described below. Unrecognized tags MUST be ignored. In the ABNF below, the WSP token, and the ALPHA and DIGIT tokens are imported from [RFC5234]. dkim= Outbound signing practices for the domain (plain-text; REQUIRED). Possible values are as follows: unknown The domain might sign some or all email. all All mail from the domain is signed with an Author Signature. discardable All mail from the domain is signed with an Author Signature. Furthermore, if a message arrives without a valid Author Signature due to modification in transit, submission via - a path without access to a signing key, or other reason, the - domain encourages the recipient(s) to discard it. + a path without access to a signing key, or any other reason, + the domain encourages the recipient(s) to discard it. + + Any other values are treated as "unknown". ABNF: adsp-dkim-tag = %x64.6b.69.6d *WSP "=" *WSP ("unknown" / "all" / "discardable") 4.3. ADSP Lookup Procedure Hosts doing an ADSP lookup MUST produce a result that is semantically equivalent to applying the following steps in the order listed below. In practice, these steps can be performed in parallel in order to @@ -342,50 +354,58 @@ scope of ADSP. The host MUST perform a DNS query for a record corresponding to the Author Domain (with no prefix). The type of the query can be of any type, since this step is only to determine if the domain itself exists in DNS. This query MAY be done in parallel with the query to fetch the named ADSP Record. If the result of this query is that the Author domain does not exist in the DNS (often called an "NXDOMAIN" error, rcode=3 in [RFC1035]), the algorithm MUST terminate with an error indicating that the domain is out of - scope. + scope. Note that a result with rcode=0 but no records (often + called "NODATA") is not the same as NXDOMAIN. NON-NORMATIVE DISCUSSION: Any resource record type could be used for this query since the existence of a resource record of any type will prevent an "NXDOMAIN" error. MX is a reasonable choice for this purpose because this record type is thought to be the most common for domains used in e-mail, and will therefore produce a result which can be more readily cached than a negative result. If the domain does exist, the checker MAY make more extensive checks to verify the existence of the domain, such as the ones - described in Section 5 of [RFC2821]. If those checks indicate + described in Section 5 of [RFC5321]. If those checks indicate that the Author domain does not exist for mail, e.g., the domain has no MX, A, or AAAA record, the checker SHOULD terminate with an error indicating that the domain is out of scope. Fetch Named ADSP Record: The host MUST query DNS for a TXT record corresponding to the Author Domain prefixed by "_adsp._domainkey." (note the trailing dot). If the result of this query is a "NOERROR" response (rcode=0 in - [RFC1035]) with an answer which is a valid ADSP record, use that - record, and the algorithm terminates. + [RFC1035]) with an answer which is a single record that is a valid + ADSP record, use that record, and the algorithm terminates. + + If the result of the query is NXDOMAIN or NOERROR with zero + records, there is no ADSP record. If the result of the query + contains more than one record, or a record that is not a valid + ADSP record, the ADSP result is undefined. If a query results in a "SERVFAIL" error response (rcode=2 in [RFC1035]), the algorithm terminates without returning a result; possible actions include queuing the message or returning an SMTP error indicating a temporary failure. + See Appendix A for examples of ADSP Lookup. + 5. IANA Considerations ADSP adds the following namespaces to the IANA registry. In all cases, new values are assigned only for values that have been documented in a published RFC after IETF Review as specified in [RFC5226]. 5.1. ADSP Specification Tag Registry An ADSP record provides for a list of specification tags. IANA has @@ -453,21 +474,22 @@ ADSP does not provide any benefit--nor, indeed, have any effect at all--unless an external system acts upon the verdict, either by treating the message differently during the delivery process or by showing some indicator to the end recipient. Such a system is out of scope for this specification. ADSP checkers may perform multiple DNS lookups per Alleged Author Domain. Since these lookups are driven by domain names in email message headers of possibly fraudulent email, legitimate ADSP - checkers can become participants in traffic multiplication attacks. + checkers can become participants in traffic multiplication attacks on + domains that appear in fraudulent email. 6.2. DNS Attacks An attacker might attack the DNS infrastructure in an attempt to impersonate ADSP records to influence a receiver's decision on how it will handle mail. However, such an attacker is more likely to attack at a higher level, e.g., redirecting A or MX record lookups in order to capture traffic that was legitimately intended for the target domain. These DNS security issues are addressed by DNSSEC [RFC4033]. @@ -476,108 +498,161 @@ the domain does not sign all of its messages. It is therefore important that the ADSP clients distinguish a DNS failure such as "SERVFAIL" from other DNS errors so that appropriate actions can be taken. 6.3. DNS Wildcards DNS wildcards (described in [RFC4592]) that exist in the DNS hierarchy at or above the domain being checked interfere with the ability to verify the scope of the ADSP check described in - Section 4.3. For example, a wildcard record for *.example.com makes - all subdomains such as foo.example.com exist in the DNS. Domains - that intend to make active use of ADSP by publishing a practice other - than Unknown are advised to avoid the use of wildcards elsewhere in - their hierarchy. + Section 4.3. For example, a wildcard record for *.domain.example + makes all subdomains such as foo.domain.example exist in the DNS. + Domains that intend to make active use of ADSP by publishing a + practice other than Unknown are advised to avoid the use of wildcards + elsewhere in their hierarchy. If a domain contains wildcards, then any name that matches the wildcard can appear to be a valid mail domain eligible for ADSP. But the "_adsp._domainkey." prefix on ADSP records does not allow publication of wildcard records that cover ADSP records without also covering non-ADSP records, nor of wildcard records that cover non- ADSP records without also covering ADSP records. Hence a domain MUST NOT publish wildcard ADSP records. 7. References 7.1. References - Normative [RFC1035] Mockapetris, P., "Domain names - implementation and specification", STD 13, RFC 1035, November 1987. [RFC2119] Bradner, S., "Key words for use in RFCs to Indicate Requirement Levels", BCP 14, RFC 2119, March 1997. - [RFC2822] Resnick, P., "Internet Message Format", RFC 2822, - April 2001. - [RFC4033] Arends, R., Austein, R., Larson, M., Massey, D., and S. Rose, "DNS Security Introduction and Requirements", RFC 4033, March 2005. [RFC4592] Lewis, E., "The Role of Wildcards in the Domain Name System", RFC 4592, July 2006. [RFC4871] Allman, E., Callas, J., Delany, M., Libbey, M., Fenton, J., and M. Thomas, "DomainKeys Identified Mail (DKIM) Signatures", RFC 4871, May 2007. [RFC5226] Narten, T. and H. Alvestrand, "Guidelines for Writing an IANA Considerations Section in RFCs", BCP 26, RFC 5226, May 2008. [RFC5234] Crocker, D. and P. Overell, "Augmented BNF for Syntax Specifications: ABNF", STD 68, RFC 5234, January 2008. -7.2. References - Informative + [RFC5322] Resnick, P., Ed., "Internet Message Format", RFC 5322, + October 2008. - [RFC2821] Klensin, J., "Simple Mail Transfer Protocol", RFC 2821, - April 2001. +7.2. References - Informative [RFC4686] Fenton, J., "Analysis of Threats Motivating DomainKeys Identified Mail (DKIM)", RFC 4686, September 2006. [RFC5016] Thomas, M., "Requirements for a DomainKeys Identified Mail (DKIM) Signing Practices Protocol", RFC 5016, October 2007. -Appendix A. Usage Examples + [RFC5321] Klensin, J., "Simple Mail Transfer Protocol", RFC 5321, + October 2008. + +Appendix A. Lookup Examples + + Assume the example domain publishes these DNS records: (In these + examples, the numbers in parentheses are comments to help identify + the records, not part of the records themselves.) + aaa.example A 192.0.2.1 (1) + _adsp._domainkey.aaa.example TXT "dkim=all" (2) + + bbb.example MX 10 mail.bbb.example (3) + mail.bbb.example A 192.0.2.2 (4) + +A.1. Domain and ADSP exist + + A mail message contains this From: header line: + + From: bob@aaa.example (Bob the Author) + + The ADSP Lookup first identifies the Author Address bob@aaa.example + and the Author Domain aaa.example. It does an MX DNS query for + aaa.example, and gets back a NOERROR result with no DNS records. + (There's no MX record, but since record (1) exists, the name exists + in the DNS.) Since that query didn't return an error, the Lookup + proceeds to a TXT DNS query for _adsp._domainkey.aaa.example, which + returns record (2). Since this is a valid DKIM record, the result is + that all messages from this domain are signed. + +A.2. Domain exists, ADSP does not exist + + A mail message contains this From: header line: + + From: alice@bbb.example (Old-fashioned Alice) + + The ADSP Lookup first identifies the Author Address alice@bbb.example + and the Author Domain bbb.example. It does an MX DNS query for + bbb.example, and gets back record (3). Since that query didn't + return an error, it then proceeds to a TXT DNS query for + _adsp._domainkey.bbb.example, which returns NXDOMAIN. Since the + domain exists but there is no ADSP record, ADSP returns the default + unknown result: messages may or may not have an author signature. + +A.3. Domain does not exist + + A mail message contains this From: header line: + + From: frank@ccc.example (Unreliable Frank) + + The ADSP Lookup first identifies the Author Address frank@ccc.example + and the Author Domain ccc.example. It does an MX DNS query for + ccc.example, and gets back an NXDOMAIN result since there are no + records at all for ccc.example. The lookup terminates with the + result that the domain does not exist in the DNS and so is out of + scope. + +Appendix B. Usage Examples These examples are intended to illustrate typical uses of ADSP. They are not intended to be exhaustive, nor to apply to every domain's or mail system's individual situation. Domain managers are advised to consider the ways that mail processing can modify messages in ways that will invalidate an existing DKIM signature, such as mailing lists, courtesy forwarders, and other paths that could add or modify headers, or modify the message body. In that case, if the modifications invalidate the DKIM signature, recipient hosts will consider the mail not to have an Author Signature, even though the signature was present when the mail was originally sent. -A.1. Single Location Domains +B.1. Single Location Domains A common mail system configuration handles all of a domain's users' incoming and outgoing mail through a single MTA or group of MTAs. In that case, the MTA(s) can be configured to sign outgoing mail with an Author Signature. In this situation it might be appropriate to publish an ADSP record for the domain containing "all", depending on whether the users also send mail through other paths that do not apply an Author Signature. Such paths could include MTAs at hotels or hotspot networks used by travelling users, web sites that provide "mail an article" features, user messages sent through mailing lists, or third party mail clients that support multiple user identities. -A.2. Bulk Mailing Domains +B.2. Bulk Mailing Domains Another common configuration uses a domain solely for bulk or broadcast mail, with no individual human users, again typically sending all the mail through a single MTA or group of MTAs that can apply an Author Signature. In this case, the domain's management can be confident that all of its outgoing mail will be sent through the signing MTA. Lacking individual users, the domain is unlikely to participate in mailing lists, but could still send mail through other paths that might invalidate signatures. @@ -589,91 +664,113 @@ delegate a subdomain to the mailing provider, for example, bigbank.example might delegate email.bigbank.example to such a provider. In that case, the provider can generate the keys and DKIM DNS records itself and use the subdomain in the Author address in the mail. Regardless of the DNS and key management strategy chosen, whoever maintains the DKIM records for the domain could also install an ADSP record containing "all". -A.3. Bulk Mailing Domains with Discardable Mail +B.3. Bulk Mailing Domains with Discardable Mail In some cases, a domain might sign all of its outgoing mail with an Author Signature, but prefer that recipient systems discard mail without a valid Author Signature to avoid confusion from mail sent from sources that do not apply an Author Signature. (In the case of domains with tightly controlled outgoing mail, this latter kind of mail is sometimes loosely called "forgeries".) In that case, it might be appropriate to publish an ADSP record containing "discardable". Note that a domain SHOULD NOT publish a "discardable" record if it wishes to maximize the likelihood that mail from the domain is delivered, since it could cause some fraction of the mail the domain sends to be discarded. -A.4. Third Party Senders +B.4. Third Party Senders Another common use case is for a third party to enter into an agreement whereby that third party will send bulk or other mail on behalf of a designated author or author domain, using that domain in - the RFC2822 From: or other headers. Due to the many and varied + the RFC5322 From: or other headers. Due to the many and varied complexities of such agreements, third party signing is not addressed in this specification. -A.5. Domains with Independent Users and Liberal Use Policies +B.5. Domains with Independent Users and Liberal Use Policies When a domain has independent users and its usage policy does not explicitly restrict them to sending mail only from designated mail servers (e.g. many ISP domains and even some corporate domains), then it is only appropriate to publish an ADSP record containing "unknown". Publishing either "all" or "discardable" will likely result in significant breakage because independent users are likely - to send mail from the external paths enumerated in Appendix A.1. + to send mail from the external paths enumerated in Appendix B.1. -A.6. Non-email Domains +B.6. Non-email Domains If a domain sends no mail at all, it can safely publish a "discardable" ADSP record, since any mail with an author address in the domain is a forgery. -Appendix B. Acknowledgements +Appendix C. Acknowledgements This document greatly benefited from comments by Steve Atkins, Jon Callas, Dave Crocker, JD Falk, Arvel Hathcock, Ellen Siegel, Michael Thomas, and Wietse Venema. -Appendix C. Change Log +Appendix D. Change Log *NOTE TO RFC EDITOR: This section may be removed upon publication of this document as an RFC.* -C.1. Changes since -ietf-dkim-05 +D.1. Changes since -ietf-dkim-06 + + Minor editorial changes suggested by AD: + + o expand DKIM in title + + o clarify that there's no subdomain matching in Section 3.1 + + o ADSP lookup can terminate without a result if the DNS lookup fails + + o random dkim= values are treated as unknown + + o in 4.2 note WSP not FWS + + o in 4.3 note that NODATA is not NXDOMAIN + + o add new Appendix A with lookup examples + + Also address Tony's nits in + http://mipassoc.org/pipermail/ietf-dkim/2008q3/010720.html. Make the + examples consistently use the .example domain. + +D.2. Changes since -ietf-dkim-05 Minor editorial nits: define NOERROR, SERVFAIL, NXDOMAIN as rfc1035 rcodes, change some punctuation, IANA section change IETF Consensus to the new IETF Review. -C.2. Changes since -ietf-dkim-04 +D.3. Changes since -ietf-dkim-04 o Require dkim at the front of each record. o Disparage wildcard records. o Changed ABNF use of whitespace from FWS back to WSP, dkim-base is wrong. o RFC 2434 -> 5226, make ref to 4686 informational since it's not standards track. o Improve examples with material from Ellen. -C.3. Changes since -ietf-dkim-03 +D.4. Changes since -ietf-dkim-03 o Name change for title and filename, to be ADSP o String changes throughout, to author Domain signing practices and to aDsp. o Added some keywords. o Clarified comparison of local part and domain in Author Address. @@ -695,21 +792,21 @@ o Revised wildcard text. o Removed 't' tag. o Removed ADSP Flags Registry section. o Changed ABNF use of whitespace from WSP back to FWS, for consistency with dkim-base. -C.4. Changes since -ietf-dkim-02 +D.5. Changes since -ietf-dkim-02 o Merge in more text from ADSP draft. o Phrase actions as host's rather than checker. o Explanatory description of i= matching. o Lookup procedure consistently refers to one ADSP record per lookup. @@ -717,21 +814,21 @@ o Simplify imports of terms from other RFCs, add Local-part, 4234 -> 5234. o Add usage example appendix. o Add IANA considerations. o Update authors list -C.5. Changes since -ietf-dkim-ssp-01 +D.6. Changes since -ietf-dkim-ssp-01 o Reworded introduction for clarity. o Various definition clarifications. o Changed names of practices to unknown, all, and discardable. o Removed normative language mandating use of SSP in particular situations (issue 1538). @@ -765,21 +862,21 @@ o Introduced the concepts of "SSP Checker" and "Evaluator". o Multiple author case now handled my separate invocations of SSP checker by Evaluator (issue 1525). o Removed check to avoid querying top-level domains. o Changed ABNF use of whitespace from [FWS] to *WSP (partially addresses issue 1543). -C.6. Changes since -ietf-dkim-ssp-00 +D.7. Changes since -ietf-dkim-ssp-00 o Clarified Operation Overview and eliminated use of Legitimate as the counterpart of Suspicious since the words have different meanings. o Improved discussion (courtesy of Arvel Hathcock) of the use of TXT records in DNS vs. a new RR type. o Clarified publication rules for multilevel names. @@ -794,56 +891,56 @@ o Added "handling" tag to express alleged sending domain's preference about handling of Suspicious messages. o Clarified handling of SERVFAIL error in SSP check. o Replaced "entity" with "domain", since with the removal of user- granularity SSP, the only entities having sender signing policies are domains. -C.7. Changes since -allman-ssp-02 +D.8. Changes since -allman-ssp-02 o Removed user-granularity SSP and u= tag. o Replaced DKIMP resource record with a TXT record. o Changed name of the primary tag from "p" to "dkim". o Replaced lookup algorithm with one which traverses upward at most one level. o Added description of records to be published, and effect of wildcard records within the domain, on SSP. -C.8. Changes since -allman-ssp-01 +D.9. Changes since -allman-ssp-01 o Changed term "Sender Signing Policy" to "Sender Signing Practices". o Changed query methodology to use a separate DNS resource record type, DKIMP. o Changed tag values from SPF-like symbols to words. o User level policies now default to that of the domain if not specified. o Removed the "Compliance" section since we're still not clear on what goes here. o Changed the "parent domain" policy to only search up one level (assumes that subdomains will publish SSP records if appropriate). o Added detailed description of SSP check procedure. -C.9. Changes since -allman-ssp-00 +D.10. Changes since -allman-ssp-00 From a "diff" perspective, the changes are extensive. Semantically, the changes are: o Added section on "Third-Party Signatures and Mailing Lists" o Added "Compliance" (transferred from -base document). I'm not clear on what needs to be done here. o Extensive restructuring.