DNS Extensions Working Group                                     S. Rose
Internet-Draft                                                      NIST
Obsoletes: 2672 (if approved)                              W. Wijngaards
Updates: 3363,4294                                            NLnet Labs
(if approved)                                              July 15, 2008                                              March 6, 2009
Intended status: Standards Track
Expires: January 16, September 7, 2009

                 Update to DNAME Redirection in the DNS

Status of This Memo

   By submitting this Internet-Draft, each author represents that any
   applicable patent or other IPR claims

   This Internet-Draft is submitted to IETF in full conformance with the
   provisions of which he BCP 78 and BCP 79.  This document may contain material
   from IETF Documents or she is aware
   have been IETF Contributions published or will made publicly
   available before November 10, 2008.  The person(s) controlling the
   copyright in some of this material may not have granted the IETF
   Trust the right to allow modifications of such material outside the
   IETF Standards Process.  Without obtaining an adequate license from
   the person(s) controlling the copyright in such materials, this
   document may not be disclosed, modified outside the IETF Standards Process, and any
   derivative works of which he or she becomes
   aware will it may not be disclosed, in accordance with Section 6 of BCP 79. created outside the IETF Standards
   Process, except to format it for publication as an RFC or to
   translate it into languages other than English.

   Internet-Drafts are working documents of the Internet Engineering
   Task Force (IETF), its areas, and its working groups.  Note that
   other groups may also distribute working documents as Internet-

   Internet-Drafts are draft documents valid for a maximum of six months
   and may be updated, replaced, or obsoleted by other documents at any
   time.  It is inappropriate to use Internet-Drafts as reference
   material or to cite them other than as "work in progress."

   The list of current Internet-Drafts can be accessed at

   The list of Internet-Draft Shadow Directories can be accessed at

   This Internet-Draft will expire on January 16, September 7, 2009.

Copyright Notice

   Copyright (C) The (c) 2009 IETF Trust (2008). and the persons identified as the
   document authors.  All rights reserved.

   This document is subject to BCP 78 and the IETF Trust's Legal
   Provisions Relating to IETF Documents in effect on the date of
   publication of this document (http://trustee.ietf.org/license-info).
   Please review these documents carefully, as they describe your rights
   and restrictions with respect to this document.


   The DNAME record provides redirection for a sub-tree of the domain
   name tree in the DNS system.  That is, all names that end with a
   particular suffix are redirected to another part of the DNS.  This is
   a revision of the original specification in RFC 2672, also aligning
   RFC 3363 and RFC 4294 with this revision.

Requirements Language

   The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",
   document are to be interpreted as described in RFC 2119 [RFC2119].

Table of Contents

   1.  Introduction . . . . . . . . . . . . . . . . . . . . . . . . .  3  4

   2.  The DNAME Resource Record  . . . . . . . . . . . . . . . . . .  3  4
     2.1.  Format . . . . . . . . . . . . . . . . . . . . . . . . . .  3  4
     2.2.  The DNAME Substitution . . . . . . . . . . . . . . . . . .  4  5
     2.3.  DNAME Apex not Redirected itself . . . . . . . . . . . . .  5  6
     2.4.  Names Next to and Below a DNAME Record . . . . . . . . . .  6  7
     2.5.  Compression of the DNAME record. . . . . . . . . . . . . .  6  7

   3.  Processing . . . . . . . . . . . . . . . . . . . . . . . . . .  7  8
     3.1.  CNAME synthesis and UD bit . . . . . . . . . . . . . . . .  7  8
     3.2.  Server algorithm . . . . . . . . . . . . . . . . . . . . .  8  9
     3.3.  Wildcards  . . . . . . . . . . . . . . . . . . . . . . . .  9 11
     3.4.  Acceptance and Intermediate Storage  . . . . . . . . . . . 10 11

   4.  DNAME Discussions in Other Documents . . . . . . . . . . . . . 10 12

   5.  Other Issues with DNAME  . . . . . . . . . . . . . . . . . . . 12 13
     5.1.  Canonical hostnames cannot be below DNAME owners . . . . . 12 13
     5.2.  Dynamic Update and DNAME . . . . . . . . . . . . . . . . . 12 13
     5.3.  DNSSEC and DNAME . . . . . . . . . . . . . . . . . . . . . 12 13
       5.3.1.  Signed DNAME, Unsigned Synthesized CNAME . . . . . . . 14
       5.3.2.  DNAME bit Bit in NSEC type map Type Map . . . . . . . . . . . . . . 12
       5.3.2. 14
       5.3.3.  DNAME Chains as Strong as the Weakest Link . . . . . . 14
       5.3.4.  Validators Must Understand DNAME . . . . . . . . . . . 12 14  DNAME in Bitmap Causes Invalid Name Error  . . . . 13 14  Valid Name Error Response Involving DNAME in
                   Bitmap . . . . . . . . . . . . . . . . . . . . . . 13 15  Response With Synthesized CNAME  . . . . . . . . . 13 15

   6.  IANA Considerations  . . . . . . . . . . . . . . . . . . . . . 14 15

   7.  Security Considerations  . . . . . . . . . . . . . . . . . . . 14 15

   8.  Acknowledgments  . . . . . . . . . . . . . . . . . . . . . . . 14 16

   9.  References . . . . . . . . . . . . . . . . . . . . . . . . . . 14 16
     9.1.  Normative References . . . . . . . . . . . . . . . . . . . 14 16
     9.2.  Informative References . . . . . . . . . . . . . . . . . . 15 17

1.  Introduction

   DNAME is a DNS Resource Record type originally defined in RFC 2672
   [RFC2672].  DNAME provides redirection from a part of the DNS name
   tree to another part of the DNS name tree.

   The DNAME RR and the CNAME RR [RFC1034] cause a lookup to
   (potentially) return data corresponding to a domain name different
   from the queried domain name.  The difference between the two
   resource records is that the CNAME RR directs the lookup of data at
   its owner to another single name, a DNAME RR directs lookups for data
   at descendents of its owner's name to corresponding names under a
   different (single) node of the tree.

   Take for example, looking through a zone (see RFC 1034 [RFC1034],
   section 4.3.2, step 3) for the domain name "foo.example.com" and a
   DNAME resource record is found at "example.com" indicating that all
   queries under "example.com" be directed to "example.net".  The lookup
   process will return to step 1 with the new query name of
   "foo.example.net".  Had the query name been "www.foo.example.com" the
   new query name would be "www.foo.example.net".

   This document is a revision of the original specification of DNAME in
   RFC 2672 [RFC2672].  DNAME was conceived to help with the problem of
   maintaining address-to-name mappings in a context of network
   renumbering.  With a careful set-up, a renumbering event in the
   network causes no change to the authoritative server that has the
   address-to-name mappings.  Examples in practice are classless reverse
   address space delegations.

   Another usage of DNAME lies in aliasing of name spaces.  For example,
   a zone administrator may want sub-trees of the DNS to contain the
   same information.  Examples include punycode alternates for domain

   This revision to DNAME does not change the wire format or the
   handling of DNAME Resource Records by existing software.  A new UD
   (Understand DNAME) bit in the EDNS flags field can be used to signal
   that CNAME synthesis is not needed.  Discussion is added on problems
   that may be encountered when using DNAME.

2.  The DNAME Resource Record

2.1.  Format

   The DNAME RR has mnemonic DNAME and type code 39 (decimal).  It is
   not class-sensitive.

   Its RDATA is comprised of a single field, <target>, which contains a
   fully qualified domain name that must be sent in uncompressed form
   [RFC1035], [RFC3597].  The <target> field MUST be present.  The
   presentation format of <target> is that of a domain name [RFC1035].

           <owner> <ttl> <class> DNAME <target>

   The effect of the DNAME RR is the substitution of the record's
   <target> for its owner name, as a suffix of a domain name.  This
   substitution has to be applied for every DNAME RR found in the
   resolution process, which allows fairly lengthy valid chains of DNAME

   Details of the substitution process, methods to avoid conflicting
   resource records, and rules for specific corner cases are given in
   the following subsections.

2.2.  The DNAME Substitution

   When following RFC 1034 [RFC1034], section 4.3.2's algorithm's third
   step, "start matching down, label by label, in the zone" and a node
   is found to own a DNAME resource record a DNAME substitution occurs.
   The name being sought may be the original query name or a name that
   is the result of a CNAME resource record being followed or a
   previously encountered DNAME.  As is the case of finding a CNAME
   resource record or NS resource record set, the processing of a DNAME
   will happen prior to finding the desired domain name.

   A DNAME substitution is performed by replacing the suffix labels of
   the name being sought matching the owner name of the DNAME resource
   record with the string of labels in the RDATA field.  The matching
   labels end with the root label in all cases.  Only whole labels are
   replaced.  See the table of examples for common cases and corner

   In the table below, the QNAME refers to the query name.  The owner is
   the DNAME owner domain name, and the target refers to the target of
   the DNAME record.  The result is the resulting name after performing
   the DNAME substitution on the query name. "no match" means that the
   query did not match the DNAME and thus no substitution is performed
   and a possible error message is returned (if no other result is
   possible).  In the examples below, 'cyc' and 'shortloop' contain

    QNAME            owner  DNAME   target         result
    ---------------- -------------- -------------- -----------------
    com.             example.com.   example.net.   <no match>
    example.com.     example.com.   example.net.   <no match>
    a.example.com.   example.com.   example.net.   a.example.net.
    a.b.example.com. example.com.   example.net.   a.b.example.net.
    ab.example.com.  b.example.com. example.net.   <no match>
    foo.example.com. example.com.   example.net.   foo.example.net.
    a.x.example.com. x.example.com. example.net.   a.example.net.
    a.example.com.   example.com.   y.example.net. a.y.example.net.
    cyc.example.com. example.com.   example.com.   cyc.example.com.
    cyc.example.com. example.com.   c.example.com. cyc.c.example.com.
    shortloop.x.x.   x.             .              shortloop.x.
    shortloop.x.     x.             .              shortloop.

                   Table 1. DNAME Substitution Examples.

   It is possible for DNAMEs to form loops, just as CNAMEs can form
   loops.  DNAMEs and CNAMEs can chain together to form loops.  A single
   corner case DNAME can form a loop.  Resolvers and servers should be
   cautious in devoting resources to a query, but be aware that fairly
   long chains of DNAMEs may be valid.  Zone content administrators
   should take care to insure that there are no loops that could occur
   when using DNAME or DNAME/CNAME redirection.

   The domain name can get too long during substitution.  For example,
   suppose the target name of the DNAME RR is 250 octets in length
   (multiple labels), if an incoming QNAME that has a first label over 5
   octets in length, the result of the result would be a name over 255 octets.  If
   this occurs the server returns an RCODE of YXDOMAIN [RFC2136].  The
   DNAME record and its signature (if the zone is signed) are included
   in the answer as proof for the YXDOMAIN (value 6) RCODE.

2.3.  DNAME Apex not Redirected itself

   Unlike a CNAME RR, a DNAME RR redirects DNS names subordinate to its
   owner name; the owner name of a DNAME is not redirected itself.  The
   domain name that owns a DNAME record is allowed to have other
   resource record types at that domain name, except DNAMEs DNAMEs, CNAMEs or CNAMEs.
   This means
   other types that have restrictions on what they can co-exist with.
   DNAME RRs are not allowed at the parent side of a delegation point
   but are allowed at a zone apex.

   The reason for this decision was that one can have a DNAME at the
   zone apex.

   There still is a need to have the customary SOA and NS resource
   records at the zone apex.  This means that DNAME does not mirror a
   zone completely, as it does not mirror the zone apex.

   These rules also allow DNAME records to be queried through RFC 1034
   [RFC1034] compliant, DNAME-unaware caches.

2.4.  Names Next to and Below a DNAME Record

   Resource records MUST NOT exist at any domain name subordinate to sub-domain of the owner of a
   DNAME RR.  To get the contents for names subordinate to that owner, owner
   name, the DNAME redirection must be invoked and the resulting target
   queried.  A server MAY refuse to load a zone that has data at a sub-
   domain name subordinate to of a domain name owning a DNAME RR.  If the server does load
   the zone, those names below the DNAME RR will be
   occluded, occluded as
   described in RFC 2136 [RFC2136], section 7.18.  Also a server SHOULD
   refuse to load a zone subordinate to the owner of a DNAME record in
   the ancestor zone.  See Section 5.2 for further discussion related to
   dynamic update.

   DNAME is a singleton type, meaning only one DNAME is allowed per
   name.  The owner name of a DNAME can only have one DNAME RR, and no
   CNAME RRs can exist at that name.  These rules make sure that for a
   single domain name only one redirection exists, and thus no confusion
   which one to follow.  A server SHOULD refuse to load a zone that
   violates these rules.

2.5.  Compression of the DNAME record.

   The DNAME owner name can be compressed like any other owner name.
   The DNAME RDATA target name MUST NOT be sent out in compressed form,
   so that a DNAME RR can be treated as an unknown type [RFC3597].

   Although the previous DNAME specification [RFC2672] (that is
   obsoleted by this specification) talked about signaling to allow
   compression of the target name, such signaling has never been
   specified and this document also does not specify this signaling

   RFC 2672 (obsoleted by this document) stated that the EDNS version
   had a meaning for understanding of DNAME and DNAME target name
   compression.  This document revises RFC 2672, in that there is no
   EDNS version signaling for DNAME.  However, the flags section of
   EDNS(0) is updated with a Understand-DNAME flag by this document (See
   Section 3.3).

3.  Processing

   The DNAME RR causes type NS additional section processing.  This
   refers to action at step 6 of the server algorithm outlined in
   section 3.2.

3.1.  CNAME synthesis and UD bit

   When preparing an response, a server upon performing a DNAME substitution
   will in all cases include the relevant DNAME RR used in the answer
   section.  A CNAME RR record with TTL equal to the corresponding DNAME RR is
   synthesized and included in the answer section for old resolvers. resolvers that did
   not indicate understanding of DNAME in queries.  The owner name of
   the CNAME is the QNAME of the query.  The DNSSEC specification
   [RFC4033], [RFC4034], [RFC4035] says that the synthesized CNAME does
   not have to be signed.  The DNAME has an RRSIG and a validating
   resolver can check the CNAME against the DNAME record and validate
   the signature over the DNAME record. RR.

   Resolvers MUST be able to handle a synthesized CNAME TTL of zero or
   equal to the TTL of the corresponding DNAME record.  A TTL of zero
   means that the CNAME can be discarded immediately after processing
   the answer.  DNAME aware resolvers can set the Understand-DNAME (UD
   bit) to receive indicate that they can handle a response with only the a DNAME RR
   and no synthesized CNAMEs.

   The UD bit is part of the EDNS [RFC2671] extended RCODE and Flags
   field.  It is used to omit server processing, transmission and
   resolver processing of unsigned synthesized CNAMEs.  Resolvers can
   set this in a query to request omission of the synthesized CNAMEs.
   Servers copy the UD bit to the response, and can omit synthesized
   CNAMEs from the answer.  Older resolvers  Resolvers that do not implement this
   specification, do not set the UD bit, and
   older servers that do not
   implement this specification do not copy the UD bit to the answer,
   and will not omit synthesized CNAMEs.

   Updated EDNS extended RCODE and Flags field.

               +0 (MSB)                +1 (LSB)
   0: |   EXTENDED-RCODE      |       VERSION         |
   2: |DO|UD|                 Z                       |

   Servers MUST be able to answer a query for a synthesized CNAME.  Like
   other query types this invokes the DNAME, and synthesizes the CNAME
   into the answer.

3.2.  Server algorithm

   Below is the server algorithm, which appeared in RFC 2672 Section
   4.1, it is expanded to handle the UD (Understand-DNAME) bit.

   1.  Set or clear the value of recursion available in the response
       depending on whether the name server is willing to provide
       recursive service.  If recursive service is available and
       requested via the RD bit in the query, go to step 5, otherwise
       step 2.

   2.  Search the available zones for the zone which is the nearest
       ancestor to QNAME.  If such a zone is found, go to step 3,
       otherwise step 4.

   3.  Start matching down, label by label, in the zone.  The matching
       process can terminate several ways:

       A.  If the whole of QNAME is matched, we have found the node.

           If the data at the node is a CNAME, and QTYPE does not match
           CNAME, copy the CNAME RR into the answer section of the
           response, change QNAME to the canonical name in the CNAME RR,
           and go back to step 1.

           Otherwise, copy all RRs which match QTYPE into the answer
           section and go to step 6.

       B.  If a match would take us out of the authoritative data, we
           have a referral.  This happens when we encounter a node with
           NS RRs marking cuts along the bottom of a zone.

           Copy the NS RRs for the sub-zone into the authority section
           of the reply.  Put whatever addresses are available into the
           additional section, using glue RRs if the addresses are not
           available from authoritative data or the cache.  Go to step

       C.  If at some label, a match is impossible (i.e., the
           corresponding label does not exist), look to see whether the
           last label matched has a DNAME record.

           If a DNAME record exists at that point, copy that record into
           the answer section.  If substitution of its <target> for its
           <owner> in QNAME would overflow the legal size for a <domain-
           name>, set RCODE to YXDOMAIN [RFC2136] and exit; otherwise
           perform the substitution and continue.  If the EDNS OPT
           record is present in the query and the UD bit is set, the
           server MAY copy the UD bit to the answer EDNS OPT record, and
           omit CNAME synthesis.  Else the server MUST synthesize a
           CNAME record as described above and include it in the answer
           section.  Go back to step 1.

           If there was no DNAME record, look to see if the "*" label

           If the "*" label does not exist, check whether the name we
           are looking for is the original QNAME in the query or a name
           we have followed due to a CNAME or DNAME.  If the name is
           original, set an authoritative name error in the response and
           exit.  Otherwise just exit.

           If the "*" label does exist, match RRs at that node against
           QTYPE.  If any match, copy them into the answer section, but
           set the owner of the RR to be QNAME, and not the node with
           the "*" label.  If the data at the node with the "*" label is
           a CNAME, and QTYPE doesn't match CNAME, copy the CNAME RR
           into the answer section of the response changing the owner
           name to the QNAME, change QNAME to the canonical name in the
           CNAME RR, and go back to step 1.  Otherwise, Go to step 6.

   4.  Start matching down in the cache.  If QNAME is found in the
       cache, copy all RRs attached to it that match QTYPE into the
       answer section.  If QNAME is not found in the cache but a DNAME
       record is present at an ancestor of QNAME, copy that DNAME record
       into the answer section.  If there was no delegation from
       authoritative data, look for the best one from the cache, and put
       it in the authority section.  Go to step 6.

   5.  Use the local resolver or a copy of its algorithm to answer the
       query.  Store the results, including any intermediate CNAMEs and
       DNAMEs, in the answer section of the response.

   6.  Using local data only, attempt to add other RRs which may be
       useful to the additional section of the query.  Exit.

   Note that there will be at most one ancestor with a DNAME as
   described in step 4 unless some zone's data is in violation of the
   no-descendants limitation in section 3.  An implementation might take
   advantage of this limitation by stopping the search of step 3c or
   step 4 when a DNAME record is encountered.

3.3.  Wildcards

   The use of DNAME in conjunction with wildcards is discouraged
   [RFC4592].  Thus records of the form "*.example.com DNAME
   example.net" SHOULD NOT be used.

   The interaction between the expansion of the wildcard and the
   redirection of the DNAME is non-deterministic.  Because the
   processing is non-deterministic, DNSSEC validating resolvers may not
   be able to validate a wildcarded DNAME.

   A server MAY give a warning that the behavior is unspecified if such
   a wildcarded DNAME is loaded.  The server MAY refuse it, refuse to
   load the zone or refuse dynamic update. updates.

3.4.  Acceptance and Intermediate Storage

   Recursive caching name servers can encounter data at names below the
   owner name of a DNAME RR, due to a change at the authoritative server
   where data from before and after the change resides in the cache.
   This conflict situation is a transitional phase, that ends when the
   old data times out.  The caching name server can opt to store both
   old and new data and treat each as if the other did not exist, or
   drop the old data, or drop the longer domain name.  In any approach,
   consistency returns after the older data TTL times out.

   Recursive caching name servers MUST perform CNAME synthesis on behalf
   of DNAME-ignorant clients.  A recursive caching name server that
   understands DNAMEs can send out queries on behalf of clients with the
   UD bit set (See Section 3.1).  After receiving the answers the
   recursive caching name server sends replies to DNAME ignorant clients
   that include DNAMEs and synthesized CNAMEs.

   If a recursive caching name server encounters a DNAME RR which
   contradicts information already in the cache (excluding CNAME
   records), it SHOULD NOT cache the DNAME RR, but it MAY cache the
   CNAME record received along with it or synthesized from the DNAME
   record, subject to the rules for CNAME caching.

4.  DNAME Discussions in Other Documents

   In [RFC2181], in Section 10.3., the discussion on MX and NS records
   touches on redirection by CNAMEs, but this also holds for DNAMEs.

   Excerpt from 10.3.  MX and NS records (in RFC 2181).

           The domain name used as the value of a NS resource record,
           or part of the value of a MX resource record must not be
           an alias.  Not only is the specification clear on this
           point, but using an alias in either of these positions
           neither works as well as might be hoped, nor well fulfills
           the ambition that may have led to this approach.  This
           domain name must have as its value one or more address
           records.  Currently those will be A records, however in
           the future other record types giving addressing
           information may be acceptable.  It can also have other
           RRs, but never a CNAME RR.

   The DNAME RR is discussed in RFC 3363, section 4, on A6 and DNAME.
   The opening premise of this section is demonstrably wrong, and so the
   conclusion based on that premise is wrong.  In particular, [RFC3363]
   deprecates the use of DNAME in the IPv6 reverse tree, which is then
   carried forward as a recommendation in [RFC4294].  Based on the
   experience gained in the meantime, [RFC3363] should be revised,
   dropping all constraints on having DNAME RRs in these zones.  This
   would greatly improve the manageability of the IPv6 reverse tree.
   These changes are made explicit below.

   In [RFC3363], the paragraph

     "The issues for DNAME in the reverse mapping tree appears to be
     closely tied to the need to use fragmented A6 in the main tree: if
     one is necessary, so is the other, and if one isn't necessary, the
     other isn't either.  Therefore, in moving RFC 2874 to experimental,
     the intent of this document is that use of DNAME RRs in the reverse
     tree be deprecated."

   is to be replaced with the word "DELETED".

   In [RFC4294], the reference to DNAME was left in as an editorial
   oversight.  The paragraph

     "Those nodes are NOT RECOMMENDED to support the experimental A6 and
     DNAME Resource Records [RFC3363]."

   is to be replaced by

     "Those nodes are NOT RECOMMENDED to support the experimental
     A6 Resource Record [RFC3363]."

5.  Other Issues with DNAME

   There are several issues to be aware of about the use of DNAME.

5.1.  Canonical hostnames cannot be below DNAME owners

   The names listed as target names of MX, NS, PTR and SRV [RFC2782]
   records must be canonical hostnames.  This means no CNAME or DNAME
   redirection may be present during DNS lookup of the address records
   for the host.  This is discussed in RFC 2181 [RFC2181], section 10.3,
   and RFC 1912 [RFC1912], section 2.4.  For SRV see RFC 2782 [RFC2782]
   page 4.

   The upshot of this is that although the lookup of a PTR record can
   involve DNAMEs, the name listed in the PTR record can not fall under
   a DNAME.  The same holds for NS, SRV and MX records.  For example,
   when punycode alternates for a zone use DNAME then the NS, MX, SRV
   and PTR records that point to that zone must use names without
   punycode in their RDATA.  What must be done then is to have the
   domain names with DNAME substitution already applied to it as the MX,
   NS, PTR, SRV data.  These are valid canonical hostnames.

5.2.  Dynamic Update and DNAME

   DNAME records can be added, changed and removed in a zone using
   dynamic update transactions.  Adding a DNAME RR to a zone occludes
   any domain names that may exist under the added DNAME.

   A server MUST reject a dynamic update message that attempts to add a
   DNAME RR at a name that already has a CNAME RR or another DNAME RR
   associated with that name.

5.3.  DNSSEC and DNAME

   The following is for implementations that understand both DNSSEC and
   DNAME (synthesis).

5.3.1.  Signed DNAME, Unsigned Synthesized CNAME

   In any response, a signed DNAME bit RR indicates a non-terminal
   redirection of the query.  There might or might not be a server
   synthesized CNAME in NSEC type map

   When the answer section, if there is, the CNAME will
   never be signed.  For a validator checks DNSSEC validator, verification of the DNAME
   RR and then checking that the CNAME was properly synthesized is
   sufficient proof.

5.3.2.  DNAME Bit in NSEC RRs returned on a name error Type Map

   In any negative response, it the NSEC or NSEC3 [RFC5155] record type bit
   map SHOULD check be checked to see that the there was no DNAME bit is not set. that could have
   been applied.  If the DNAME bit in the type bit map is set then and the
   query name is a subdomain of the closest encloser that is asserted,
   then DNAME substitution should have been done, but the substitution
   has not.

5.3.2.  Validators Must Understand not been done as specified.

5.3.3.  DNAME

   Below are examples Chains as Strong as the Weakest Link

   A response can contain a chain of why DNSSEC validators MUST understand DNAME. DNAME and CNAME redirections.  That
   chain can end in a positive answer or a negative (no name error or no
   data error) reply.  Each step in that chain results in resource
   records added to the answer or authority section of the response.
   Only if all steps are secure can the AD bit be set for the response.
   If one of the steps is bogus, the result is bogus.

5.3.4.  Validators Must Understand DNAME

   Below are examples of why DNSSEC validators MUST understand DNAME.
   In the examples below, SOA records, wildcard denial NSECs and other
   material not under discussion has been omitted.  DNAME in Bitmap Causes Invalid Name Error

   ;; Header: QR AA DO RCODE=3(NXDOMAIN)
   ;; Question
   foo.bar.example.com. IN A
   ;; Answer Authority
   bar.example.com. NSEC dub.example.com. A DNAME
   bar.example.com. RRSIG NSEC [valid signature]

   If this is the received response, then only by understanding that the
   DNAME bit in the NSEC bitmap means that foo.bar.example.com needed to
   have been redirected by the DNAME, the validator can see that it is a
   BOGUS reply from an attacker that collated existing records from the
   DNS to create a confusing reply.

   If the DNAME bit had not been set in the NSEC record above then the
   answer would have validated as a correct name error response.  Valid Name Error Response Involving DNAME in Bitmap

   ;; Header: QR AA DO RCODE=3(NXDOMAIN)
   ;; Question
   cee.example.com. IN A
   ;; Answer Authority
   bar.example.com. NSEC dub.example.com. A DNAME
   bar.example.com. RRSIG NSEC [valid signature]

   This reply response has the same NSEC records as the example above, but
   with this query name (cee.example.com), the answer is validated,
   because 'cee' does not get redirected by the DNAME at 'bar'.  Response With Synthesized CNAME

   ;; Header: QR AA DO RCODE=0(NOERROR)
   ;; Question
   foo.bar.example.com. IN A
   ;; Answer
   bar.example.com. DNAME bar.example.net.
   bar.example.com. RRSIG DNAME [valid signature]
   foo.bar.example.com. CNAME foo.bar.example.net.

   The answer response shown above has the synthesized CNAME included.
   However, the CNAME has no signature, since the server does not sign
   online.  So it this response cannot be trusted.  It could be altered by
   an attacker to be foo.bar.example.com CNAME bla.bla.example.  The
   DNAME record does have its signature included, since it does not change for every query
   change.  The validator must verify the DNAME signature and then
   recursively resolve further to query for the foo.bar.example.net A

6.  IANA Considerations

   The DNAME Resource Record type code 39 (decimal) originally has been
   registered by [RFC2672].  IANA should update the DNS resource record
   registry to point to this document for RR type 39.

   This draft requests the second highest bit in the EDNS flags field
   for the Understand-DNAME (UD) flag as described in Section 3.1.

7.  Security Considerations

   DNAME redirects queries elsewhere, which may impact security based on
   policy and the security status of the zone with the DNAME and the
   redirection zone's security status.  For validating resolvers, the
   lowest security status of the links in the chain of CNAME and DNAME
   redirections is applied to the result.

   If a validating resolver accepts wildcarded DNAMEs, this creates
   security issues.  Since the processing of a wildcarded DNAME is non-
   deterministic and the CNAME that was substituted by the server has no
   signature, the resolver may choose a different result than what the
   server meant, and consequently end up at the wrong destination.  Use
   of wildcarded DNAMEs is discouraged in any case [RFC4592].

   A validating resolver MUST understand DNAME, according to [RFC4034].
   In RFC 4034 Section 5.3.2 5.3.4 examples are given that illustrate this

8.  Acknowledgments

   The authors of this draft would like to acknowledge Matt Larson for
   beginning this effort to address the issues related to the DNAME RR
   type.  The authors would also like to acknowledge Paul Vixie, Ed
   Lewis, Mark Andrews, Mike StJohns, Niall O'Reilly, Sam Weiler, Alfred
   Hoenes and Kevin Darcy for their review and comments on this

9.  References

9.1.  Normative References

   [RFC1034]  Mockapetris, P., "Domain names - concepts and facilities",
              STD 13, RFC 1034, November 1987.

   [RFC1035]  Mockapetris, P., "Domain names - implementation and
              specification", STD 13, RFC 1035, November 1987.

   [RFC2119]  Bradner, S., "Key words for use in RFCs to Indicate
              Requirement Levels", BCP 14, RFC 2119, March 1997.

   [RFC2136]  Vixie, P., Thomson, S., Rekhter, Y., and J. Bound,
              "Dynamic Updates in the Domain Name System (DNS UPDATE)",
              RFC 2136, April 1997.

   [RFC2181]  Elz, R. and R. Bush, "Clarifications to the DNS
              Specification", RFC 2181, July 1997.

   [RFC2671]  Vixie, P., "Extension Mechanisms for DNS (EDNS0)",
              RFC 2671, August 1999.

   [RFC2782]  Gulbrandsen, A., Vixie, P., and L. Esibov, "A DNS RR for
              specifying the location of services (DNS SRV)", RFC 2782,
              February 2000.

   [RFC3597]  Gustafsson, A., "Handling of Unknown DNS Resource Record
              (RR) Types", RFC 3597, September 2003.

   [RFC4033]  Arends, R., Austein, R., Larson, M., Massey, D., and S.
              Rose, "DNS Security Introduction and Requirements",
              RFC 4033, March 2005.

   [RFC4034]  Arends, R., Austein, R., Larson, M., Massey, D., and S.
              Rose, "Resource Records for the DNS Security Extensions",
              RFC 4034, March 2005.

   [RFC4035]  Arends, R., Austein, R., Larson, M., Massey, D., and S.
              Rose, "Protocol Modifications for the DNS Security
              Extensions", RFC 4035, March 2005.

   [RFC4592]  Lewis, E., "The Role of Wildcards in the Domain Name
              System", RFC 4592, July 2006.

   [RFC5155]  Laurie, B., Sisson, G., Arends, R., and D. Blacka, "DNS
              Security (DNSSEC) Hashed Authenticated Denial of
              Existence", RFC 5155, March 2008.

9.2.  Informative References

   [RFC1912]  Barr, D., "Common DNS Operational and Configuration
              Errors", RFC 1912, February 1996.

   [RFC2672]  Crawford, M., "Non-Terminal DNS Name Redirection",
              RFC 2672, August 1999.

   [RFC3363]  Bush, R., Durand, A., Fink, B., Gudmundsson, O., and T.
              Hain, "Representing Internet Protocol version 6 (IPv6)
              Addresses in the Domain Name System (DNS)", RFC 3363,
              August 2002.

   [RFC4294]  Loughney, J., "IPv6 Node Requirements", RFC 4294,
              April 2006.

Authors' Addresses

   Scott Rose
   100 Bureau Dr.
   Gaithersburg, MD  20899

   Phone: +1-301-975-8439
   Fax:   +1-301-975-6238
   EMail: scottr@nist.gov

   Wouter Wijngaards
   NLnet Labs
   Kruislaan 419
   Science Park 140
   Amsterdam  1098 VA XG
   The Netherlands

   Phone: +31-20-888-4551
   EMail: wouter@nlnetlabs.nl

Full Copyright Statement

   Copyright (C) The IETF Trust (2008).

   This document is subject to the rights, licenses and restrictions
   contained in BCP 78, and except as set forth therein, the authors
   retain all their rights.

   This document and the information contained herein are provided on an

Intellectual Property

   The IETF takes no position regarding the validity or scope of any
   Intellectual Property Rights or other rights that might be claimed to
   pertain to the implementation or use of the technology described in
   this document or the extent to which any license under such rights
   might or might not be available; nor does it represent that it has
   made any independent effort to identify any such rights.  Information
   on the procedures with respect to rights in RFC documents can be
   found in BCP 78 and BCP 79.

   Copies of IPR disclosures made to the IETF Secretariat and any
   assurances of licenses to be made available, or the result of an
   attempt made to obtain a general license or permission for the use of
   such proprietary rights by implementers or users of this
   specification can be obtained from the IETF on-line IPR repository at

   The IETF invites any interested party to bring to its attention any
   copyrights, patents or patent applications, or other proprietary
   rights that may cover technology that may be required to implement
   this standard.  Please address the information to the IETF at


   Funding for the RFC Editor function is provided by the IETF
   Administrative Support Activity (IASA).