--- 1/draft-ietf-jose-json-web-signature-02.txt 2012-07-06 19:14:12.397425560 +0200 +++ 2/draft-ietf-jose-json-web-signature-03.txt 2012-07-06 19:14:12.465425347 +0200 @@ -1,183 +1,212 @@ JOSE Working Group M. Jones Internet-Draft Microsoft Intended status: Standards Track J. Bradley -Expires: November 13, 2012 Ping Identity +Expires: January 7, 2013 Ping Identity N. Sakimura NRI - May 12, 2012 + July 6, 2012 JSON Web Signature (JWS) - draft-ietf-jose-json-web-signature-02 + draft-ietf-jose-json-web-signature-03 Abstract JSON Web Signature (JWS) is a means of representing content secured with digital signatures or Message Authentication Codes (MACs) using - JSON data structures. Cryptographic algorithms and identifiers used - with this specification are enumerated in the separate JSON Web - Algorithms (JWA) specification. Related encryption capabilities are - described in the separate JSON Web Encryption (JWE) specification. - -Requirements Language - - The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT", - "SHOULD", "SHOULD NOT", "RECOMMENDED", "MAY", and "OPTIONAL" in this - document are to be interpreted as described in RFC 2119 [RFC2119]. + JavaScript Object Notation (JSON) data structures. Cryptographic + algorithms and identifiers for use with this specification are + described in the separate JSON Web Algorithms (JWA) specification. + Related encryption capabilities are described in the separate JSON + Web Encryption (JWE) specification. Status of this Memo This Internet-Draft is submitted in full conformance with the provisions of BCP 78 and BCP 79. Internet-Drafts are working documents of the Internet Engineering Task Force (IETF). Note that other groups may also distribute working documents as Internet-Drafts. The list of current Internet- Drafts is at http://datatracker.ietf.org/drafts/current/. Internet-Drafts are draft documents valid for a maximum of six months and may be updated, replaced, or obsoleted by other documents at any time. It is inappropriate to use Internet-Drafts as reference material or to cite them other than as "work in progress." - This Internet-Draft will expire on November 13, 2012. + This Internet-Draft will expire on January 7, 2013. Copyright Notice Copyright (c) 2012 IETF Trust and the persons identified as the document authors. All rights reserved. This document is subject to BCP 78 and the IETF Trust's Legal Provisions Relating to IETF Documents (http://trustee.ietf.org/license-info) in effect on the date of publication of this document. Please review these documents carefully, as they describe your rights and restrictions with respect to this document. Code Components extracted from this document must include Simplified BSD License text as described in Section 4.e of the Trust Legal Provisions and are provided without warranty as described in the Simplified BSD License. Table of Contents 1. Introduction . . . . . . . . . . . . . . . . . . . . . . . . . 4 + 1.1. Notational Conventions . . . . . . . . . . . . . . . . . . 4 2. Terminology . . . . . . . . . . . . . . . . . . . . . . . . . 4 3. JSON Web Signature (JWS) Overview . . . . . . . . . . . . . . 5 - 3.1. Example JWS . . . . . . . . . . . . . . . . . . . . . . . 5 - 4. JWS Header . . . . . . . . . . . . . . . . . . . . . . . . . . 6 + 3.1. Example JWS . . . . . . . . . . . . . . . . . . . . . . . 6 + 4. JWS Header . . . . . . . . . . . . . . . . . . . . . . . . . . 7 4.1. Reserved Header Parameter Names . . . . . . . . . . . . . 7 4.1.1. "alg" (Algorithm) Header Parameter . . . . . . . . . . 7 - 4.1.2. "jku" (JWK Set URL) Header Parameter . . . . . . . . . 7 - 4.1.3. "jwk" (JSON Web Key) Header Parameter . . . . . . . . 7 + 4.1.2. "jku" (JWK Set URL) Header Parameter . . . . . . . . . 8 + 4.1.3. "jwk" (JSON Web Key) Header Parameter . . . . . . . . 8 4.1.4. "x5u" (X.509 URL) Header Parameter . . . . . . . . . . 8 4.1.5. "x5t" (X.509 Certificate Thumbprint) Header Parameter . . . . . . . . . . . . . . . . . . . . . . 8 - 4.1.6. "x5c" (X.509 Certificate Chain) Header Parameter . . . 8 + 4.1.6. "x5c" (X.509 Certificate Chain) Header Parameter . . . 9 4.1.7. "kid" (Key ID) Header Parameter . . . . . . . . . . . 9 4.1.8. "typ" (Type) Header Parameter . . . . . . . . . . . . 9 - 4.2. Public Header Parameter Names . . . . . . . . . . . . . . 9 - 4.3. Private Header Parameter Names . . . . . . . . . . . . . . 9 + 4.1.9. "cty" (Content Type) Header Parameter . . . . . . . . 10 + 4.2. Public Header Parameter Names . . . . . . . . . . . . . . 10 + 4.3. Private Header Parameter Names . . . . . . . . . . . . . . 10 5. Rules for Creating and Validating a JWS . . . . . . . . . . . 10 6. Securing JWSs with Cryptographic Algorithms . . . . . . . . . 12 - 7. IANA Considerations . . . . . . . . . . . . . . . . . . . . . 12 - 7.1. Registration of application/jws MIME Media Type . . . . . 12 - 7.2. Registration of "JWS" Type Value . . . . . . . . . . . . . 13 - 8. Security Considerations . . . . . . . . . . . . . . . . . . . 14 - 8.1. Cryptographic Security Considerations . . . . . . . . . . 14 - 8.2. JSON Security Considerations . . . . . . . . . . . . . . . 14 - 8.3. Unicode Comparison Security Considerations . . . . . . . . 15 - 9. Open Issues and Things To Be Done (TBD) . . . . . . . . . . . 15 - 10. References . . . . . . . . . . . . . . . . . . . . . . . . . . 15 - 10.1. Normative References . . . . . . . . . . . . . . . . . . . 15 - 10.2. Informative References . . . . . . . . . . . . . . . . . . 16 - Appendix A. JWS Examples . . . . . . . . . . . . . . . . . . . . 17 - A.1. JWS using HMAC SHA-256 . . . . . . . . . . . . . . . . . . 17 - A.1.1. Encoding . . . . . . . . . . . . . . . . . . . . . . . 17 - A.1.2. Decoding . . . . . . . . . . . . . . . . . . . . . . . 19 - A.1.3. Validating . . . . . . . . . . . . . . . . . . . . . . 19 + 7. IANA Considerations . . . . . . . . . . . . . . . . . . . . . 13 + 7.1. JSON Web Signature and Encryption Header Parameters + Registry . . . . . . . . . . . . . . . . . . . . . . . . . 13 + 7.1.1. Registration Template . . . . . . . . . . . . . . . . 13 + 7.1.2. Initial Registry Contents . . . . . . . . . . . . . . 14 + 7.2. JSON Web Signature and Encryption Type Values Registry . . 15 + 7.2.1. Registration Template . . . . . . . . . . . . . . . . 15 + 7.2.2. Initial Registry Contents . . . . . . . . . . . . . . 16 + 7.3. Media Type Registration . . . . . . . . . . . . . . . . . 16 + 7.3.1. Registry Contents . . . . . . . . . . . . . . . . . . 16 + 8. Security Considerations . . . . . . . . . . . . . . . . . . . 17 + 8.1. Cryptographic Security Considerations . . . . . . . . . . 17 + 8.2. JSON Security Considerations . . . . . . . . . . . . . . . 18 + 8.3. Unicode Comparison Security Considerations . . . . . . . . 18 + 9. Open Issues . . . . . . . . . . . . . . . . . . . . . . . . . 18 + 10. References . . . . . . . . . . . . . . . . . . . . . . . . . . 19 + 10.1. Normative References . . . . . . . . . . . . . . . . . . . 19 + 10.2. Informative References . . . . . . . . . . . . . . . . . . 20 - A.2. JWS using RSA SHA-256 . . . . . . . . . . . . . . . . . . 19 - A.2.1. Encoding . . . . . . . . . . . . . . . . . . . . . . . 19 - A.2.2. Decoding . . . . . . . . . . . . . . . . . . . . . . . 23 - A.2.3. Validating . . . . . . . . . . . . . . . . . . . . . . 23 - A.3. JWS using ECDSA P-256 SHA-256 . . . . . . . . . . . . . . 24 - A.3.1. Encoding . . . . . . . . . . . . . . . . . . . . . . . 24 - A.3.2. Decoding . . . . . . . . . . . . . . . . . . . . . . . 26 - A.3.3. Validating . . . . . . . . . . . . . . . . . . . . . . 26 - A.4. Example Plaintext JWS . . . . . . . . . . . . . . . . . . 26 - Appendix B. Notes on implementing base64url encoding without - padding . . . . . . . . . . . . . . . . . . . . . . . 27 - Appendix C. Acknowledgements . . . . . . . . . . . . . . . . . . 28 - Appendix D. Document History . . . . . . . . . . . . . . . . . . 28 - Authors' Addresses . . . . . . . . . . . . . . . . . . . . . . . . 30 + Appendix A. JWS Examples . . . . . . . . . . . . . . . . . . . . 21 + A.1. JWS using HMAC SHA-256 . . . . . . . . . . . . . . . . . . 21 + A.1.1. Encoding . . . . . . . . . . . . . . . . . . . . . . . 21 + A.1.2. Decoding . . . . . . . . . . . . . . . . . . . . . . . 23 + A.1.3. Validating . . . . . . . . . . . . . . . . . . . . . . 23 + A.2. JWS using RSA SHA-256 . . . . . . . . . . . . . . . . . . 23 + A.2.1. Encoding . . . . . . . . . . . . . . . . . . . . . . . 23 + A.2.2. Decoding . . . . . . . . . . . . . . . . . . . . . . . 27 + A.2.3. Validating . . . . . . . . . . . . . . . . . . . . . . 27 + A.3. JWS using ECDSA P-256 SHA-256 . . . . . . . . . . . . . . 27 + A.3.1. Encoding . . . . . . . . . . . . . . . . . . . . . . . 27 + A.3.2. Decoding . . . . . . . . . . . . . . . . . . . . . . . 29 + A.3.3. Validating . . . . . . . . . . . . . . . . . . . . . . 29 + A.4. JWS using ECDSA P-521 SHA-512 . . . . . . . . . . . . . . 30 + A.4.1. Encoding . . . . . . . . . . . . . . . . . . . . . . . 30 + A.4.2. Decoding . . . . . . . . . . . . . . . . . . . . . . . 32 + A.4.3. Validating . . . . . . . . . . . . . . . . . . . . . . 32 + A.5. Example Plaintext JWS . . . . . . . . . . . . . . . . . . 32 + Appendix B. "x5c" (X.509 Certificate Chain) Example . . . . . . . 33 + Appendix C. Notes on implementing base64url encoding without + padding . . . . . . . . . . . . . . . . . . . . . . . 35 + Appendix D. Acknowledgements . . . . . . . . . . . . . . . . . . 36 + Appendix E. Document History . . . . . . . . . . . . . . . . . . 36 + Authors' Addresses . . . . . . . . . . . . . . . . . . . . . . . . 38 1. Introduction JSON Web Signature (JWS) is a compact format for representing content secured with digital signatures or Message Authentication Codes (MACs) intended for space constrained environments such as HTTP Authorization headers and URI query parameters. It represents this - content using JSON [RFC4627] data structures. The JWS digital - signature and MAC mechanisms are independent of the type of content - being secured, allowing arbitrary content to be secured. - Cryptographic algorithms and identifiers used with this specification - are enumerated in the separate JSON Web Algorithms (JWA) [JWA] - specification. Related encryption capabilities are described in the - separate JSON Web Encryption (JWE) [JWE] specification. + content using JavaScript Object Notation (JSON) [RFC4627] data + structures. The JWS cryptographic mechanisms provide integrity + protection for arbitrary sequences of bytes. + + Cryptographic algorithms and identifiers for use with this + specification are described in the separate JSON Web Algorithms (JWA) + [JWA] specification. Related encryption capabilities are described + in the separate JSON Web Encryption (JWE) [JWE] specification. + +1.1. Notational Conventions + + The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT", + "SHOULD", "SHOULD NOT", "RECOMMENDED", "MAY", and "OPTIONAL" in this + document are to be interpreted as described in Key words for use in + RFCs to Indicate Requirement Levels [RFC2119]. 2. Terminology JSON Web Signature (JWS) A data structure cryptographically securing a JWS Header and a JWS Payload with a JWS Signature value. JWS Header A string representing a JSON object that describes the digital signature or MAC operation applied to create the JWS Signature value. JWS Payload The bytes to be secured - a.k.a., the message. The payload can contain an arbitrary sequence of bytes. JWS Signature A byte array containing the cryptographic material - that secures the contents of the JWS Header and the JWS Payload. + that secures the JWS Header and the JWS Payload. - Encoded JWS Header Base64url encoding of the bytes of the UTF-8 RFC - 3629 [RFC3629] representation of the JWS Header. + Encoded JWS Header Base64url encoding of the bytes of the UTF-8 + [RFC3629] representation of the JWS Header. Encoded JWS Payload Base64url encoding of the JWS Payload. Encoded JWS Signature Base64url encoding of the JWS Signature. JWS Secured Input The concatenation of the Encoded JWS Header, a period ('.') character, and the Encoded JWS Payload. - Header Parameter Names The names of the members within the JSON - object represented in a JWS Header. + Header Parameter Name The name of a member of the JSON object + representing a JWS Header. - Header Parameter Values The values of the members within the JSON - object represented in a JWS Header. + Header Parameter Value The value of a member of the JSON object + representing a JWS Header. JWS Compact Serialization A representation of the JWS as the concatenation of the Encoded JWS Header, the Encoded JWS Payload, and the Encoded JWS Signature in that order, with the three strings being separated by period ('.') characters. Base64url Encoding For the purposes of this specification, this term always refers to the URL- and filename-safe Base64 encoding described in RFC 4648 [RFC4648], Section 5, with the (non URL- safe) '=' padding characters omitted, as permitted by Section 3.2. - (See Appendix B for notes on implementing base64url encoding + (See Appendix C for notes on implementing base64url encoding without padding.) + Collision Resistant Namespace A namespace that allows names to be + allocated in a manner such that they are highly unlikely to + collide with other names. For instance, collision resistance can + be achieved through administrative delegation of portions of the + namespace or through use of collision-resistant name allocation + functions. Examples of Collision Resistant Namespaces include: + Domain Names, Object Identifiers (OIDs) as defined in the ITU-T + X.660 and X.670 Recommendation series, and Universally Unique + IDentifiers (UUIDs) [RFC4122]. When using an administratively + delegated namespace, the definer of a name needs to take + reasonable precautions to ensure they are in control of the + portion of the namespace they use to define the name. + StringOrURI A JSON string value, with the additional requirement that while arbitrary string values MAY be used, any value - containing a ":" character MUST be a URI as defined in RFC 3986 - [RFC3986]. + containing a ":" character MUST be a URI [RFC3986]. 3. JSON Web Signature (JWS) Overview JWS represents digitally signed or MACed content using JSON data structures and base64url encoding. The representation consists of three parts: the JWS Header, the JWS Payload, and the JWS Signature. In the Compact Serialization, the three parts are base64url-encoded for transmission, and represented as the concatenation of the encoded strings in that order, with the three strings being separated by period ('.') characters. (A JSON Serialization for this information @@ -207,31 +236,32 @@ {"iss":"joe", "exp":1300819380, "http://example.com/is_root":true} Base64url encoding the bytes of the UTF-8 representation of the JSON object yields the following Encoded JWS Payload (with line breaks for display purposes only): eyJpc3MiOiJqb2UiLA0KICJleHAiOjEzMDA4MTkzODAsDQogImh0dHA6Ly9leGFt cGxlLmNvbS9pc19yb290Ijp0cnVlfQ - Computing the HMAC of the bytes of the UTF-8 representation of the - JWS Secured Input (the concatenation of the Encoded JWS Header, a - period ('.') character, and the Encoded JWS Payload) (which is the - same as the ASCII representation) with the HMAC SHA-256 algorithm - using the key specified in Appendix A.1 and base64url encoding the - result yields this Encoded JWS Signature value: + Computing the HMAC of the bytes of the ASCII [USASCII] representation + of the JWS Secured Input (the concatenation of the Encoded JWS + Header, a period ('.') character, and the Encoded JWS Payload) with + the HMAC SHA-256 algorithm using the key specified in Appendix A.1 + and base64url encoding the result yields this Encoded JWS Signature + value: dBjftJeZ4CVP-mB92K27uhbUJU1p1r_wW1gFWFOEjXk Concatenating these parts in the order Header.Payload.Signature with period characters between the parts yields this complete JWS representation (with line breaks for display purposes only): + eyJ0eXAiOiJKV1QiLA0KICJhbGciOiJIUzI1NiJ9 . eyJpc3MiOiJqb2UiLA0KICJleHAiOjEzMDA4MTkzODAsDQogImh0dHA6Ly9leGFt cGxlLmNvbS9pc19yb290Ijp0cnVlfQ . dBjftJeZ4CVP-mB92K27uhbUJU1p1r_wW1gFWFOEjXk This computation is illustrated in more detail in Appendix A.1. 4. JWS Header @@ -249,142 +279,157 @@ Parameter Names. 4.1. Reserved Header Parameter Names The following header parameter names are reserved with meanings as defined below. All the names are short because a core goal of JWSs is for the representations to be compact. Additional reserved header parameter names MAY be defined via the IANA JSON Web Signature and Encryption Header Parameters registry - [JWA]. As indicated by the common registry, JWSs and JWEs share a - common header parameter space; when a parameter is used by both - specifications, its usage must be compatible between the + Section 7.1. As indicated by the common registry, JWSs and JWEs + share a common header parameter space; when a parameter is used by + both specifications, its usage must be compatible between the specifications. 4.1.1. "alg" (Algorithm) Header Parameter The "alg" (algorithm) header parameter identifies the cryptographic - algorithm used to secure the JWS. A list of defined "alg" values for - use with JWS is presented in Section 3.1 of the JSON Web Algorithms - (JWA) [JWA] specification. The processing of the "alg" header - parameter requires that the value MUST be one that is both supported - and for which there exists a key for use with that algorithm - associated with the party that digitally signed or MACed the content. + algorithm used to secure the JWS. The algorithm specified by the + "alg" value MUST be supported by the implementation and there MUST be + a key for use with that algorithm associated with the party that + digitally signed or MACed the content or the JWS MUST be rejected. The "alg" value is case sensitive. Its value MUST be a string containing a StringOrURI value. This header parameter is REQUIRED. - "alg" values SHOULD either be defined in the IANA JSON Web Signature - and Encryption Algorithms registry [JWA] or be a URI that contains a - collision resistant namespace. + A list of defined "alg" values for use with JWS is presented in + Section 3.1 of the JSON Web Algorithms (JWA) [JWA] specification. + "alg" values SHOULD either be registered in the IANA JSON Web + Signature and Encryption Algorithms registry [JWA] or be a URI that + contains a Collision Resistant Namespace. 4.1.2. "jku" (JWK Set URL) Header Parameter - The "jku" (JWK Set URL) header parameter is an absolute URL that + The "jku" (JWK Set URL) header parameter is a URI [RFC3986] that refers to a resource for a set of JSON-encoded public keys, one of which corresponds to the key used to digitally sign the JWS. The - keys MUST be encoded as a JSON Web Key Set (JWK Set) as defined in - the JSON Web Key (JWK) [JWK] specification. The protocol used to - acquire the resource MUST provide integrity protection; an HTTP GET - request to retrieve the certificate MUST use TLS RFC 2818 [RFC2818] - RFC 5246 [RFC5246]; the identity of the server MUST be validated, as - per Section 3.1 of HTTP Over TLS [RFC2818]. This header parameter is - OPTIONAL. + keys MUST be encoded as a JSON Web Key Set (JWK Set) [JWK]. The + protocol used to acquire the resource MUST provide integrity + protection; an HTTP GET request to retrieve the certificate MUST use + TLS [RFC2818] [RFC5246]; the identity of the server MUST be + validated, as per Section 3.1 of HTTP Over TLS [RFC2818]. This + header parameter is OPTIONAL. 4.1.3. "jwk" (JSON Web Key) Header Parameter The "jwk" (JSON Web Key) header parameter is a public key that corresponds to the key used to digitally sign the JWS. This key is represented as a JSON Web Key [JWK]. This header parameter is OPTIONAL. 4.1.4. "x5u" (X.509 URL) Header Parameter - The "x5u" (X.509 URL) header parameter is an absolute URL that refers + The "x5u" (X.509 URL) header parameter is a URI [RFC3986] that refers to a resource for the X.509 public key certificate or certificate - chain corresponding to the key used to digitally sign the JWS. The - identified resource MUST provide a representation of the certificate - or certificate chain that conforms to RFC 5280 [RFC5280] in PEM - encoded form RFC 1421 [RFC1421]. The certificate containing the - public key of the entity that digitally signed the JWS MUST be the - first certificate. This MAY be followed by additional certificates, - with each subsequent certificate being the one used to certify the + chain [RFC5280] corresponding to the key used to digitally sign the + JWS. The identified resource MUST provide a representation of the + certificate or certificate chain that conforms to RFC 5280 [RFC5280] + in PEM encoded form [RFC1421]. The certificate containing the public + key of the entity that digitally signed the JWS MUST be the first + certificate. This MAY be followed by additional certificates, with + each subsequent certificate being the one used to certify the previous one. The protocol used to acquire the resource MUST provide integrity protection; an HTTP GET request to retrieve the certificate - MUST use TLS RFC 2818 [RFC2818] RFC 5246 [RFC5246]; the identity of - the server MUST be validated, as per Section 3.1 of HTTP Over TLS - [RFC2818]. This header parameter is OPTIONAL. + MUST use TLS [RFC2818] [RFC5246]; the identity of the server MUST be + validated, as per Section 3.1 of HTTP Over TLS [RFC2818]. This + header parameter is OPTIONAL. 4.1.5. "x5t" (X.509 Certificate Thumbprint) Header Parameter The "x5t" (X.509 Certificate Thumbprint) header parameter provides a base64url encoded SHA-1 thumbprint (a.k.a. digest) of the DER - encoding of the X.509 certificate corresponding to the key used to - digitally sign the JWS. This header parameter is OPTIONAL. + encoding of the X.509 certificate [RFC5280] corresponding to the key + used to digitally sign the JWS. This header parameter is OPTIONAL. If, in the future, certificate thumbprints need to be computed using hash functions other than SHA-1, it is suggested that additional related header parameters be defined for that purpose. For example, it is suggested that a new "x5t#S256" (X.509 Certificate Thumbprint using SHA-256) header parameter could be defined by registering it in the IANA JSON Web Signature and Encryption Header Parameters registry - [JWA]. + Section 7.1. 4.1.6. "x5c" (X.509 Certificate Chain) Header Parameter The "x5c" (X.509 Certificate Chain) header parameter contains the - X.509 public key certificate or certificate chain corresponding to - the key used to digitally sign the JWS. The certificate or - certificate chain is represented as an array of certificate values. - Each value is a base64-encoded (not base64url encoded) DER/BER PKIX + X.509 public key certificate or certificate chain [RFC5280] + corresponding to the key used to digitally sign the JWS. The + certificate or certificate chain is represented as an array of + certificate values. Each value is a base64 encoded ([RFC4648] + Section 4 - not base64url encoded) DER [ITU.X690.1994] PKIX certificate value. The certificate containing the public key of the entity that digitally signed the JWS MUST be the first certificate. This MAY be followed by additional certificates, with each subsequent certificate being the one used to certify the previous one. The recipient MUST verify the certificate chain according to [RFC5280] and reject the JWS if any validation failure occurs. This header parameter is OPTIONAL. + See Appendix B for an example "x5c" value. + 4.1.7. "kid" (Key ID) Header Parameter The "kid" (key ID) header parameter is a hint indicating which key - was used to secure the JWS. This allows originators to explicitly - signal a change of key to recipients. Should the recipient be unable - to locate a key corresponding to the "kid" value, they SHOULD treat - that condition as an error. The interpretation of the contents of - the "kid" parameter is unspecified. Its value MUST be a string. - This header parameter is OPTIONAL. + was used to secure the JWS. This parameter allows originators to + explicitly signal a change of key to recipients. Should the + recipient be unable to locate a key corresponding to the "kid" value, + they SHOULD treat that condition as an error. The interpretation of + the "kid" value is unspecified. Its value MUST be a string. This + header parameter is OPTIONAL. + + When used with a JWK, the "kid" value MAY be used to match a JWK + "kid" parameter value. 4.1.8. "typ" (Type) Header Parameter - The "typ" (type) header parameter is used to declare the type of the - secured content. The type value "JWS" MAY be used to indicate that - the secured content is a JWS. The "typ" value is case sensitive. - Its value MUST be a string. This header parameter is OPTIONAL. + The "typ" (type) header parameter is used to declare the type of this + object. The type value "JWS" MAY be used to indicate that this + object is a JWS. The "typ" value is case sensitive. Its value MUST + be a string. This header parameter is OPTIONAL. - MIME Media Type RFC 2045 [RFC2045] values MAY be used as "typ" - values. + MIME Media Type [RFC2046] values MAY be used as "typ" values. - "typ" values SHOULD either be defined in the IANA JSON Web Signature - and Encryption "typ" Values registry [JWA] or be a URI that contains - a collision resistant namespace. + "typ" values SHOULD either be registered in the IANA JSON Web + Signature and Encryption Type Values registry Section 7.2 or be a URI + that contains a Collision Resistant Namespace. + +4.1.9. "cty" (Content Type) Header Parameter + + The "cty" (content type) header parameter is used to declare the type + of the secured content (the Payload). The "cty" value is case + sensitive. Its value MUST be a string. This header parameter is + OPTIONAL. + + The values used for the "cty" header parameter come from the same + value space as the "typ" header parameter, with the same rules + applying. 4.2. Public Header Parameter Names Additional header parameter names can be defined by those using JWSs. However, in order to prevent collisions, any new header parameter - name SHOULD either be defined in the IANA JSON Web Signature and - Encryption Header Parameters registry [JWA] or be a URI that contains - a collision resistant namespace. In each case, the definer of the - name or value needs to take reasonable precautions to make sure they - are in control of the part of the namespace they use to define the - header parameter name. + name SHOULD either be registered in the IANA JSON Web Signature and + Encryption Header Parameters registry Section 7.1 or be a URI that + contains a Collision Resistant Namespace. In each case, the definer + of the name or value needs to take reasonable precautions to make + sure they are in control of the part of the namespace they use to + define the header parameter name. New header parameters should be introduced sparingly, as they can result in non-interoperable JWSs. 4.3. Private Header Parameter Names A producer and consumer of a JWS may agree to any header parameter name that is not a Reserved Name Section 4.1 or a Public Name Section 4.2. Unlike Public Names, these private names are subject to collision and should be used with caution. @@ -476,112 +521,247 @@ 2. Unicode Normalization [USA15] MUST NOT be applied at any point to either the JSON string or to the string it is to be compared against. 3. Comparisons between the two strings MUST be performed as a Unicode code point to code point equality comparison. 6. Securing JWSs with Cryptographic Algorithms - JWS uses cryptographic algorithms to digitally sign or MAC the - contents of the JWS Header and the JWS Payload. The JSON Web - Algorithms (JWA) [JWA] specification enumerates a set of - cryptographic algorithms and identifiers to be used with this - specification. Specifically, Section 3.1 enumerates a set of "alg" - (algorithm) header parameter values intended for use this - specification. It also describes the semantics and operations that - are specific to these algorithms and algorithm families. + JWS uses cryptographic algorithms to digitally sign or MAC the JWS + Header and the JWS Payload. The JSON Web Algorithms (JWA) [JWA] + specification describes a set of cryptographic algorithms and + identifiers to be used with this specification. Specifically, + Section 3.1 specifies a set of "alg" (algorithm) header parameter + values intended for use this specification. It also describes the + semantics and operations that are specific to these algorithms and + algorithm families. Public keys employed for digital signing can be identified using the Header Parameter methods described in Section 4.1 or can be distributed using methods that are outside the scope of this specification. 7. IANA Considerations -7.1. Registration of application/jws MIME Media Type + The following registration procedure is used for all the registries + established by this specification. - This specification registers the "application/jws" MIME Media Type - RFC 2045 [RFC2045]. + Values are registered with a Specification Required [RFC5226] after a + two week review period on the [TBD]@ietf.org mailing list, on the + advice of one or more Designated Experts. However, to allow for the + allocation of values prior to publication, the Designated Expert(s) + may approve registration once they are satisfied that such a + specification will be published. - Type name: - application + Registration requests must be sent to the [TBD]@ietf.org mailing list + for review and comment, with an appropriate subject (e.g., "Request + for access token type: example"). [[ Note to RFC-EDITOR: The name of + the mailing list should be determined in consultation with the IESG + and IANA. Suggested name: jose-reg-review. ]] - Subtype name: - jws + Within the review period, the Designated Expert(s) will either + approve or deny the registration request, communicating this decision + to the review list and IANA. Denials should include an explanation + and, if applicable, suggestions as to how to make the request + successful. - Required parameters: - n/a + IANA must only accept registry updates from the Designated Expert(s), + and should direct all requests for registration to the review mailing + list. - Optional parameters: - n/a +7.1. JSON Web Signature and Encryption Header Parameters Registry - Encoding considerations: - n/a + This specification establishes the IANA JSON Web Signature and + Encryption Header Parameters registry for reserved JWS and JWE header + parameter names. The registry records the reserved header parameter + name and a reference to the specification that defines it. The same + Header Parameter Name may be registered multiple times, provided that + the parameter usage is compatible between the specifications. - Security considerations: - See the Security Considerations section of this document +7.1.1. Registration Template - Interoperability considerations: - n/a + Header Parameter Name: + The name requested (e.g., "example"). - Published specification: - [[ this document ]] + Change Controller: + For standards-track RFCs, state "IETF". For others, give the name + of the responsible party. Other details (e.g., postal address, + e-mail address, home page URI) may also be included. - Applications that use this media type: - OpenID Connect + Specification Document(s): + Reference to the document that specifies the parameter, preferably + including a URI that can be used to retrieve a copy of the + document. An indication of the relevant sections may also be + included, but is not required. - Additional information: - Magic number(s): n/a - File extension(s): n/a - Macintosh file type code(s): n/a +7.1.2. Initial Registry Contents - Person & email address to contact for further information: - Michael B. Jones - mbj@microsoft.com + This specification registers the Header Parameter Names defined in + Section 4.1 in this registry. - Intended usage: - COMMON + o Header Parameter Name: "alg" - Restrictions on usage: - none + o Change Controller: IETF - Author: - Michael B. Jones - mbj@microsoft.com + o Specification Document(s): Section 4.1.1 of [[ this document ]] - Change controller: - IETF + o Header Parameter Name: "jku" -7.2. Registration of "JWS" Type Value + o Change Controller: IETF - This specification registers the following "typ" header parameter - value in the JSON Web Signature and Encryption "typ" Values registry - established by the JSON Web Algorithms (JWA) [JWA] specification: + o Specification Document(s): Section 4.1.2 of [[ this document ]] - "typ" header parameter value: - "JWS" + o Header Parameter Name: "jwk" - Abbreviation for MIME type: - application/jws + o Change Controller: IETF - Change controller: - IETF + o Specification document(s): Section 4.1.3 of [[ this document ]] - Description: - [[ this document ]] + o Header Parameter Name: "x5u" + + o Change Controller: IETF + + o Specification Document(s): Section 4.1.4 of [[ this document ]] + + o Header Parameter Name: "x5t" + + o Change Controller: IETF + + o Specification Document(s): Section 4.1.5 of [[ this document ]] + o Header Parameter Name: "x5c" + + o Change Controller: IETF + + o Specification Document(s): Section 4.1.6 of [[ this document ]] + + o Header Parameter Name: "kid" + + o Change Controller: IETF + + o Specification Document(s): Section 4.1.7 of [[ this document ]] + + o Header Parameter Name: "typ" + + o Change Controller: IETF + + o Specification Document(s): Section 4.1.8 of [[ this document ]] + + o Header Parameter Name: "cty" + + o Change Controller: IETF + + o Specification Document(s): Section 4.1.9 of [[ this document ]] + +7.2. JSON Web Signature and Encryption Type Values Registry + + This specification establishes the IANA JSON Web Signature and + Encryption Type Values registry for values of the JWS and JWE "typ" + (type) header parameter. It is RECOMMENDED that all registered "typ" + values also include a MIME Media Type [RFC2046] value that the + registered value is a short name for. The registry records the "typ" + value, the MIME type value that it is an abbreviation for (if any), + and a reference to the specification that defines it. + + MIME Media Type [RFC2046] values MUST NOT be directly registered as + new "typ" values; rather, new "typ" values MAY be registered as short + names for MIME types. + +7.2.1. Registration Template + + "typ" Header Parameter Value: + The name requested (e.g., "example"). + + Abbreviation for MIME Type: + The MIME type that this name is an abbreviation for (e.g., + "application/example"). + + Change Controller: + For standards-track RFCs, state "IETF". For others, give the name + of the responsible party. Other details (e.g., postal address, + e-mail address, home page URI) may also be included. + + Specification Document(s): + Reference to the document that specifies the parameter, preferably + including a URI that can be used to retrieve a copy of the + document. An indication of the relevant sections may also be + included, but is not required. + +7.2.2. Initial Registry Contents + + This specification registers the "JWS" type value in this registry: + + o "typ" Header Parameter Value: "JWS" + + o Abbreviation for MIME type: application/jws + + o Change Controller: IETF + + o Specification Document(s): Section 4.1.8 of [[ this document ]] + +7.3. Media Type Registration + +7.3.1. Registry Contents + + This specification registers the "application/jws" Media Type + [RFC2046] in the MIME Media Type registry [RFC4288] to indicate that + the content is a JWS using the Compact Serialization. + + o Type name: application + + o Subtype name: jws + + o Required parameters: n/a + + o Optional parameters: n/a + + o Encoding considerations: JWS values are encoded as a series of + base64url encoded values (some of which may be the empty string) + separated by period ('.') characters + + o Security considerations: See the Security Considerations section + of this document + + o Interoperability considerations: n/a + o Published specification: [[ this document ]] + + o Applications that use this media type: OpenID Connect, Mozilla + Browser ID, Salesforce, Google, numerous others that use signed + JWTs + + o Additional information: Magic number(s): n/a, File extension(s): + n/a, Macintosh file type code(s): n/a + + o Person & email address to contact for further information: Michael + B. Jones, mbj@microsoft.com + + o Intended usage: COMMON + + o Restrictions on usage: none + + o Author: Michael B. Jones, mbj@microsoft.com + + o Change Controller: IETF 8. Security Considerations 8.1. Cryptographic Security Considerations + All of the security issues faced by any cryptographic application + must be faced by a JWS/JWE/JWK agent. Among these issues are + protecting the user's private key, preventing various attacks, and + helping the user avoid mistakes such as inadvertently encrypting a + message for the wrong recipient. The entire list of security + considerations is beyond the scope of this document, but some + significant concerns are listed here. + All the security considerations in XML DSIG 2.0 [W3C.CR-xmldsig-core2-20120124], also apply to this specification, other than those that are XML specific. Likewise, many of the best practices documented in XML Signature Best Practices [W3C.WD-xmldsig-bestpractices-20110809] also apply to this specification, other than those that are XML specific. Keys are only as strong as the amount of entropy used to generate them. A minimum of 128 bits of entropy should be used for all keys, and depending upon the application context, more may be required. @@ -589,24 +769,20 @@ When utilizing TLS to retrieve information, the authority providing the resource MUST be authenticated and the information retrieved MUST be free from modification. When cryptographic algorithms are implemented in such a way that successful operations take a different amount of time than unsuccessful operations, attackers may be able to use the time difference to obtain information about the keys employed. Therefore, such timing differences must be avoided. - TBD: We need to also put in text about: Importance of keeping secrets - secret. Rotating keys. Strengths and weaknesses of the different - algorithms. - TBD: Write security considerations about the implications of using a SHA-1 hash (for compatibility reasons) for the "x5t" (x.509 certificate thumbprint). TBD: We need a section on generating randomness in browsers; it's easy to screw up. 8.2. JSON Security Considerations TBD: We need to look into any issues relating to security and JSON @@ -629,99 +805,123 @@ JSON strings MAY contain characters outside the Unicode Basic Multilingual Plane. For instance, the G clef character (U+1D11E) may be represented in a JSON string as "\uD834\uDD1E". Ideally, JWS implementations SHOULD ensure that characters outside the Basic Multilingual Plane are preserved and compared correctly; alternatively, if this is not possible due to these characters exercising limitations present in the underlying JSON implementation, then input containing them MUST be rejected. -9. Open Issues and Things To Be Done (TBD) +9. Open Issues - The following items remain to be done in this draft: + [[ to be removed by the RFC editor before publication as an RFC ]] - o Add an example in which the payload is not a base64url encoded - JSON object. + The following items remain to be considered or done in this draft: + + o Should we define an optional nonce and/or timestamp header + parameter? (Use of a nonce is an effective countermeasure to some + kinds of attacks.) o Finish the Security Considerations section. 10. References 10.1. Normative References - [JWA] Jones, M., "JSON Web Algorithms (JWA)", May 2012. + [ITU.X690.1994] + International Telecommunications Union, "Information + Technology - ASN.1 encoding rules: Specification of Basic + Encoding Rules (BER), Canonical Encoding Rules (CER) and + Distinguished Encoding Rules (DER)", ITU-T Recommendation + X.690, 1994. - [JWK] Jones, M., "JSON Web Key (JWK)", May 2012. + [JWA] Jones, M., "JSON Web Algorithms (JWA)", July 2012. + + [JWK] Jones, M., "JSON Web Key (JWK)", July 2012. [RFC1421] Linn, J., "Privacy Enhancement for Internet Electronic Mail: Part I: Message Encryption and Authentication Procedures", RFC 1421, February 1993. - [RFC2045] Freed, N. and N. Borenstein, "Multipurpose Internet Mail - Extensions (MIME) Part One: Format of Internet Message - Bodies", RFC 2045, November 1996. + [RFC2046] Freed, N. and N. Borenstein, "Multipurpose Internet Mail + Extensions (MIME) Part Two: Media Types", RFC 2046, + November 1996. [RFC2119] Bradner, S., "Key words for use in RFCs to Indicate Requirement Levels", BCP 14, RFC 2119, March 1997. [RFC2818] Rescorla, E., "HTTP Over TLS", RFC 2818, May 2000. [RFC3629] Yergeau, F., "UTF-8, a transformation format of ISO 10646", STD 63, RFC 3629, November 2003. [RFC3986] Berners-Lee, T., Fielding, R., and L. Masinter, "Uniform Resource Identifier (URI): Generic Syntax", STD 66, RFC 3986, January 2005. + [RFC4288] Freed, N. and J. Klensin, "Media Type Specifications and + Registration Procedures", BCP 13, RFC 4288, December 2005. + [RFC4627] Crockford, D., "The application/json Media Type for JavaScript Object Notation (JSON)", RFC 4627, July 2006. [RFC4648] Josefsson, S., "The Base16, Base32, and Base64 Data Encodings", RFC 4648, October 2006. + [RFC5226] Narten, T. and H. Alvestrand, "Guidelines for Writing an + IANA Considerations Section in RFCs", BCP 26, RFC 5226, + May 2008. + [RFC5246] Dierks, T. and E. Rescorla, "The Transport Layer Security (TLS) Protocol Version 1.2", RFC 5246, August 2008. [RFC5280] Cooper, D., Santesson, S., Farrell, S., Boeyen, S., Housley, R., and W. Polk, "Internet X.509 Public Key Infrastructure Certificate and Certificate Revocation List (CRL) Profile", RFC 5280, May 2008. [USA15] Davis, M., Whistler, K., and M. Duerst, "Unicode Normalization Forms", Unicode Standard Annex 15, 09 2009. + [USASCII] American National Standards Institute, "Coded Character + Set -- 7-bit American Standard Code for Information + Interchange", ANSI X3.4, 1986. + 10.2. Informative References [CanvasApp] Facebook, "Canvas Applications", 2010. [JSS] Bradley, J. and N. Sakimura (editor), "JSON Simple Sign", September 2010. [JWE] Jones, M., Rescorla, E., and J. Hildebrand, "JSON Web - Encryption (JWE)", May 2012. + Encryption (JWE)", July 2012. [JWS-JS] Jones, M., Bradley, J., and N. Sakimura, "JSON Web - Signature JSON Serialization (JWS-JS)", March 2012. + Signature JSON Serialization (JWS-JS)", July 2012. - [JWT] Jones, M., Balfanz, D., Bradley, J., Goland, Y., Panzer, - J., Sakimura, N., and P. Tarjan, "JSON Web Token (JWT)", - May 2012. + [JWT] Jones, M., Bradley, J., and N. Sakimura, "JSON Web Token + (JWT)", July 2012. [MagicSignatures] Panzer (editor), J., Laurie, B., and D. Balfanz, "Magic Signatures", January 2011. + [RFC4122] Leach, P., Mealling, M., and R. Salz, "A Universally + Unique IDentifier (UUID) URN Namespace", RFC 4122, + July 2005. + [W3C.CR-xmldsig-core2-20120124] - Eastlake, D., Reagle, J., Yiu, K., Solo, D., Datta, P., - Hirsch, F., Cantor, S., and T. Roessler, "XML Signature + Reagle, J., Solo, D., Datta, P., Hirsch, F., Eastlake, D., + Roessler, T., Cantor, S., and K. Yiu, "XML Signature Syntax and Processing Version 2.0", World Wide Web Consortium CR CR-xmldsig-core2-20120124, January 2012, . [W3C.WD-xmldsig-bestpractices-20110809] Datta, P. and F. Hirsch, "XML Signature Best Practices", World Wide Web Consortium WD WD-xmldsig-bestpractices- 20110809, August 2011, . @@ -773,78 +973,75 @@ cGxlLmNvbS9pc19yb290Ijp0cnVlfQ Concatenating the Encoded JWS Header, a period character, and the Encoded JWS Payload yields this JWS Secured Input value (with line breaks for display purposes only): eyJ0eXAiOiJKV1QiLA0KICJhbGciOiJIUzI1NiJ9 . eyJpc3MiOiJqb2UiLA0KICJleHAiOjEzMDA4MTkzODAsDQogImh0dHA6Ly9leGFt cGxlLmNvbS9pc19yb290Ijp0cnVlfQ - The UTF-8 representation of the JWS Secured Input (which is the same - as the ASCII representation) is the following byte array: + The ASCII representation of the JWS Secured Input is the following + byte array: [101, 121, 74, 48, 101, 88, 65, 105, 79, 105, 74, 75, 86, 49, 81, 105, 76, 65, 48, 75, 73, 67, 74, 104, 98, 71, 99, 105, 79, 105, 74, 73, 85, 122, 73, 49, 78, 105, 74, 57, 46, 101, 121, 74, 112, 99, 51, 77, 105, 79, 105, 74, 113, 98, 50, 85, 105, 76, 65, 48, 75, 73, 67, 74, 108, 101, 72, 65, 105, 79, 106, 69, 122, 77, 68, 65, 52, 77, 84, 107, 122, 79, 68, 65, 115, 68, 81, 111, 103, 73, 109, 104, 48, 100, 72, 65, 54, 76, 121, 57, 108, 101, 71, 70, 116, 99, 71, 120, 108, 76, 109, 78, 118, 98, 83, 57, 112, 99, 49, 57, 121, 98, 50, 57, 48, 73, 106, 112, 48, 99, 110, 86, 108, 102, 81] HMACs are generated using keys. This example uses the key represented by the following byte array: [3, 35, 53, 75, 43, 15, 165, 188, 131, 126, 6, 101, 119, 123, 166, 143, 90, 179, 40, 230, 240, 84, 201, 40, 169, 15, 132, 178, 210, 80, 46, 191, 211, 251, 90, 146, 210, 6, 71, 239, 150, 138, 180, 195, 119, 98, 61, 34, 61, 46, 33, 114, 5, 46, 79, 8, 192, 205, 154, 245, 103, 208, 128, 163] - Running the HMAC SHA-256 algorithm on the bytes of the UTF-8 - representation of the JWS Secured Input (which is the same as the - ASCII representation) with this key yields the following byte array: + Running the HMAC SHA-256 algorithm on the bytes of the ASCII + representation of the JWS Secured Input with this key yields the + following byte array: [116, 24, 223, 180, 151, 153, 224, 37, 79, 250, 96, 125, 216, 173, 187, 186, 22, 212, 37, 77, 105, 214, 191, 240, 91, 88, 5, 88, 83, 132, 141, 121] - Base64url encoding the above HMAC output yields the Encoded JWS Signature value: dBjftJeZ4CVP-mB92K27uhbUJU1p1r_wW1gFWFOEjXk A.1.2. Decoding - Decoding the JWS first requires removing the base64url encoding from - the Encoded JWS Header, the Encoded JWS Payload, and the Encoded JWS - Signature. We base64url decode the inputs and turn them into the - corresponding byte arrays. We decode the Encoded JWS Header byte - array containing the UTF-8 representation of the JWS Header into the - JWS Header string. + Decoding the JWS requires base64url decoding the Encoded JWS Header, + Encoded JWS Payload, and Encoded JWS Signature to produce the JWS + Header, JWS Payload, and JWS Signature byte arrays. The byte array + containing the UTF-8 representation of the JWS Header is decoded into + the JWS Header string. A.1.3. Validating Next we validate the decoded results. Since the "alg" parameter in the header is "HS256", we validate the HMAC SHA-256 value contained in the JWS Signature. If any of the validation steps fail, the JWS MUST be rejected. First, we validate that the JWS Header string is legal JSON. To validate the HMAC value, we repeat the previous process of using - the correct key and the UTF-8 representation of the JWS Secured Input - (which is the same as the ASCII representation) as input to the HMAC - SHA-256 function and then taking the output and determining if it - matches the JWS Signature. If it matches exactly, the HMAC has been - validated. + the correct key and the ASCII representation of the JWS Secured Input + as input to the HMAC SHA-256 function and then taking the output and + determining if it matches the JWS Signature. If it matches exactly, + the HMAC has been validated. A.2. JWS using RSA SHA-256 A.2.1. Encoding The JWS Header in this example is different from the previous example in two ways: First, because a different algorithm is being used, the "alg" value is different. Second, for illustration purposes only, the optional "typ" parameter is not used. (This difference is not related to the algorithm employed.) The JWS Header used is: @@ -865,41 +1063,41 @@ "http://example.com/is_root":true} Concatenating the Encoded JWS Header, a period character, and the Encoded JWS Payload yields this JWS Secured Input value (with line breaks for display purposes only): eyJhbGciOiJSUzI1NiJ9 . eyJpc3MiOiJqb2UiLA0KICJleHAiOjEzMDA4MTkzODAsDQogImh0dHA6Ly9leGFt cGxlLmNvbS9pc19yb290Ijp0cnVlfQ - The UTF-8 representation of the JWS Secured Input (which is the same - as the ASCII representation) is the following byte array: + The ASCII representation of the JWS Secured Input is the following + byte array: [101, 121, 74, 104, 98, 71, 99, 105, 79, 105, 74, 83, 85, 122, 73, 49, 78, 105, 74, 57, 46, 101, 121, 74, 112, 99, 51, 77, 105, 79, 105, 74, 113, 98, 50, 85, 105, 76, 65, 48, 75, 73, 67, 74, 108, 101, 72, 65, 105, 79, 106, 69, 122, 77, 68, 65, 52, 77, 84, 107, 122, 79, 68, 65, 115, 68, 81, 111, 103, 73, 109, 104, 48, 100, 72, 65, 54, 76, 121, 57, 108, 101, 71, 70, 116, 99, 71, 120, 108, 76, 109, 78, 118, 98, 83, 57, 112, 99, 49, 57, 121, 98, 50, 57, 48, 73, 106, 112, 48, 99, 110, 86, 108, 102, 81] - The RSA key consists of a public part (n, e), and a private exponent - d. The values of the RSA key used in this example, presented as the - byte arrays representing big endian integers are: + The RSA key consists of a public part (Modulus, Exponent), and a + Private Exponent. The values of the RSA key used in this example, + presented as the byte arrays representing big endian integers are: +-----------+-------------------------------------------------------+ | Parameter | Value | | Name | | +-----------+-------------------------------------------------------+ - | n | [161, 248, 22, 10, 226, 227, 201, 180, 101, 206, 141, | + | Modulus | [161, 248, 22, 10, 226, 227, 201, 180, 101, 206, 141, | | | 45, 101, 98, 99, 54, 43, 146, 125, 190, 41, 225, 240, | | | 36, 119, 252, 22, 37, 204, 144, 161, 54, 227, 139, | | | 217, 52, 151, 197, 182, 234, 99, 221, 119, 17, 230, | | | 124, 116, 41, 249, 86, 176, 251, 138, 143, 8, 154, | | | 220, 75, 105, 137, 60, 193, 51, 63, 83, 237, 208, 25, | | | 184, 119, 132, 37, 47, 236, 145, 79, 228, 133, 119, | | | 105, 89, 75, 234, 66, 128, 211, 44, 15, 85, 191, 98, | | | 148, 79, 19, 3, 150, 188, 110, 155, 223, 110, 189, | | | 210, 189, 163, 103, 142, 236, 160, 198, 104, 247, 1, | | | 179, 141, 191, 251, 56, 200, 52, 44, 226, 254, 109, | @@ -908,23 +1106,23 @@ | | 248, 165, 193, 117, 3, 146, 249, 68, 232, 237, 100, | | | 193, 16, 198, 182, 71, 96, 154, 164, 120, 58, 235, | | | 156, 108, 154, 215, 85, 49, 48, 80, 99, 139, 131, | | | 102, 92, 111, 111, 122, 130, 163, 150, 112, 42, 31, | | | 100, 27, 130, 211, 235, 242, 57, 34, 25, 73, 31, 182, | | | 134, 135, 44, 87, 22, 245, 10, 248, 53, 141, 154, | | | 139, 157, 23, 195, 64, 114, 143, 127, 135, 216, 154, | | | 24, 216, 252, 171, 103, 173, 132, 89, 12, 46, 207, | | | 117, 147, 57, 54, 60, 7, 3, 77, 111, 96, 111, 158, | | | 33, 224, 84, 86, 202, 229, 233, 161] | - | e | [1, 0, 1] | - | d | [18, 174, 113, 164, 105, 205, 10, 43, 195, 126, 82, | - | | 108, 69, 0, 87, 31, 29, 97, 117, 29, 100, 233, 73, | + | Exponent | [1, 0, 1] | + | Private | [18, 174, 113, 164, 105, 205, 10, 43, 195, 126, 82, | + | Exponent | 108, 69, 0, 87, 31, 29, 97, 117, 29, 100, 233, 73, | | | 112, 123, 98, 89, 15, 157, 11, 165, 124, 150, 60, 64, | | | 30, 63, 207, 47, 44, 211, 189, 236, 136, 229, 3, 191, | | | 198, 67, 155, 11, 40, 200, 47, 125, 55, 151, 103, 31, | | | 82, 19, 238, 216, 193, 90, 37, 216, 213, 206, 160, 2, | | | 94, 227, 171, 46, 139, 127, 121, 33, 111, 198, 59, | | | 234, 86, 39, 83, 180, 6, 68, 198, 161, 81, 39, 217, | | | 178, 149, 69, 64, 160, 187, 225, 163, 5, 86, 152, 45, | | | 78, 159, 222, 95, 100, 37, 241, 77, 75, 113, 52, 65, | | | 181, 93, 199, 59, 155, 74, 237, 204, 146, 172, 227, | | | 146, 126, 55, 245, 125, 12, 253, 94, 117, 129, 250, | @@ -934,84 +1132,76 @@ | | 250, 92, 34, 208, 81, 40, 91, 214, 59, 148, 59, 86, | | | 93, 137, 138, 5, 104, 84, 19, 229, 60, 60, 108, 101, | | | 37, 255, 31, 227, 78, 61, 220, 112, 240, 213, 100, | | | 80, 253, 164, 139, 161, 46, 16, 78, 157, 235, 159, | | | 184, 24, 129, 225, 196, 189, 242, 93, 146, 71, 244, | | | 80, 200, 101, 146, 121, 104, 231, 115, 52, 244, 65, | | | 79, 117, 167, 80, 225, 57, 84, 110, 58, 138, 115, | | | 157] | +-----------+-------------------------------------------------------+ - The RSA private key (n, d) is then passed to the RSA signing - function, which also takes the hash type, SHA-256, and the bytes of - the UTF-8 representation of the JWS Secured Input (which is the same - as the ASCII representation) as inputs. The result of the digital - signature is a byte array S, which represents a big endian integer. - In this example, S is: + The RSA private key (Modulus, Private Exponent) is then passed to the + RSA signing function, which also takes the hash type, SHA-256, and + the bytes of the ASCII representation of the JWS Secured Input as + inputs. The result of the digital signature is a byte array, which + represents a big endian integer. In this example, it is: - +--------+----------------------------------------------------------+ - | Result | Value | - | Name | | - +--------+----------------------------------------------------------+ - | S | [112, 46, 33, 137, 67, 232, 143, 209, 30, 181, 216, 45, | - | | 191, 120, 69, 243, 65, 6, 174, 27, 129, 255, 247, 115, | - | | 17, 22, 173, 209, 113, 125, 131, 101, 109, 66, 10, 253, | - | | 60, 150, 238, 221, 115, 162, 102, 62, 81, 102, 104, 123, | - | | 0, 11, 135, 34, 110, 1, 135, 237, 16, 115, 249, 69, 229, | - | | 130, 173, 252, 239, 22, 216, 90, 121, 142, 232, 198, | - | | 109, 219, 61, 184, 151, 91, 23, 208, 148, 2, 190, 237, | - | | 213, 217, 217, 112, 7, 16, 141, 178, 129, 96, 213, 248, | - | | 4, 12, 167, 68, 87, 98, 184, 31, 190, 127, 249, 217, 46, | - | | 10, 231, 111, 36, 242, 91, 51, 187, 230, 244, 74, 230, | - | | 30, 177, 4, 10, 203, 32, 4, 77, 62, 249, 18, 142, 212, | - | | 1, 48, 121, 91, 212, 189, 59, 65, 238, 202, 208, 102, | - | | 171, 101, 25, 129, 253, 228, 141, 247, 127, 55, 45, 195, | - | | 139, 159, 175, 221, 59, 239, 177, 139, 93, 163, 204, 60, | - | | 46, 176, 47, 158, 58, 65, 214, 18, 202, 173, 21, 145, | - | | 18, 115, 160, 95, 35, 185, 232, 56, 250, 175, 132, 157, | - | | 105, 132, 41, 239, 90, 30, 136, 121, 130, 54, 195, 212, | - | | 14, 96, 69, 34, 165, 68, 200, 242, 122, 122, 45, 184, 6, | - | | 99, 209, 108, 247, 202, 234, 86, 222, 64, 92, 178, 33, | - | | 90, 69, 178, 194, 85, 102, 181, 90, 193, 167, 72, 160, | - | | 112, 223, 200, 163, 42, 70, 149, 67, 208, 25, 238, 251, | - | | 71] | - +--------+----------------------------------------------------------+ + [112, 46, 33, 137, 67, 232, 143, 209, 30, 181, 216, 45, 191, 120, 69, + 243, 65, 6, 174, 27, 129, 255, 247, 115, 17, 22, 173, 209, 113, 125, + 131, 101, 109, 66, 10, 253, 60, 150, 238, 221, 115, 162, 102, 62, 81, + 102, 104, 123, 0, 11, 135, 34, 110, 1, 135, 237, 16, 115, 249, 69, + 229, 130, 173, 252, 239, 22, 216, 90, 121, 142, 232, 198, 109, 219, + 61, 184, 151, 91, 23, 208, 148, 2, 190, 237, 213, 217, 217, 112, 7, + 16, 141, 178, 129, 96, 213, 248, 4, 12, 167, 68, 87, 98, 184, 31, + 190, 127, 249, 217, 46, 10, 231, 111, 36, 242, 91, 51, 187, 230, 244, + 74, 230, 30, 177, 4, 10, 203, 32, 4, 77, 62, 249, 18, 142, 212, 1, + 48, 121, 91, 212, 189, 59, 65, 238, 202, 208, 102, 171, 101, 25, 129, + 253, 228, 141, 247, 127, 55, 45, 195, 139, 159, 175, 221, 59, 239, + 177, 139, 93, 163, 204, 60, 46, 176, 47, 158, 58, 65, 214, 18, 202, + 173, 21, 145, 18, 115, 160, 95, 35, 185, 232, 56, 250, 175, 132, 157, + 105, 132, 41, 239, 90, 30, 136, 121, 130, 54, 195, 212, 14, 96, 69, + 34, 165, 68, 200, 242, 122, 122, 45, 184, 6, 99, 209, 108, 247, 202, + 234, 86, 222, 64, 92, 178, 33, 90, 69, 178, 194, 85, 102, 181, 90, + 193, 167, 72, 160, 112, 223, 200, 163, 42, 70, 149, 67, 208, 25, 238, + 251, 71] Base64url encoding the digital signature produces this value for the Encoded JWS Signature (with line breaks for display purposes only): cC4hiUPoj9Eetdgtv3hF80EGrhuB__dzERat0XF9g2VtQgr9PJbu3XOiZj5RZmh7 AAuHIm4Bh-0Qc_lF5YKt_O8W2Fp5jujGbds9uJdbF9CUAr7t1dnZcAcQjbKBYNX4 BAynRFdiuB--f_nZLgrnbyTyWzO75vRK5h6xBArLIARNPvkSjtQBMHlb1L07Qe7K 0GarZRmB_eSN9383LcOLn6_dO--xi12jzDwusC-eOkHWEsqtFZESc6BfI7noOPqv hJ1phCnvWh6IeYI2w9QOYEUipUTI8np6LbgGY9Fs98rqVt5AXLIhWkWywlVmtVrB p0igcN_IoypGlUPQGe77Rw A.2.2. Decoding - Decoding the JWS from this example requires processing the Encoded - JWS Header and Encoded JWS Payload exactly as done in the first - example. + Decoding the JWS requires base64url decoding the Encoded JWS Header, + Encoded JWS Payload, and Encoded JWS Signature to produce the JWS + Header, JWS Payload, and JWS Signature byte arrays. The byte array + containing the UTF-8 representation of the JWS Header is decoded into + the JWS Header string. A.2.3. Validating Since the "alg" parameter in the header is "RS256", we validate the RSA SHA-256 digital signature contained in the JWS Signature. If any of the validation steps fail, the JWS MUST be rejected. First, we validate that the JWS Header string is legal JSON. Validating the JWS Signature is a little different from the previous example. First, we base64url decode the Encoded JWS Signature to produce a digital signature S to check. We then pass (n, e), S and - the bytes of the UTF-8 representation of the JWS Secured Input (which - is the same as the ASCII representation) to an RSA signature verifier - that has been configured to use the SHA-256 hash function. + the bytes of the ASCII representation of the JWS Secured Input to an + RSA signature verifier that has been configured to use the SHA-256 + hash function. A.3. JWS using ECDSA P-256 SHA-256 A.3.1. Encoding The JWS Header for this example differs from the previous example because a different algorithm is being used. The JWS Header used is: {"alg":"ES256"} The following byte array contains the UTF-8 representation of the JWS @@ -1030,35 +1221,36 @@ "http://example.com/is_root":true} Concatenating the Encoded JWS Header, a period character, and the Encoded JWS Payload yields this JWS Secured Input value (with line breaks for display purposes only): eyJhbGciOiJFUzI1NiJ9 . eyJpc3MiOiJqb2UiLA0KICJleHAiOjEzMDA4MTkzODAsDQogImh0dHA6Ly9leGFt cGxlLmNvbS9pc19yb290Ijp0cnVlfQ - The UTF-8 representation of the JWS Secured Input (which is the same - as the ASCII representation) is the following byte array: + The ASCII representation of the JWS Secured Input is the following + byte array: [101, 121, 74, 104, 98, 71, 99, 105, 79, 105, 74, 70, 85, 122, 73, 49, 78, 105, 74, 57, 46, 101, 121, 74, 112, 99, 51, 77, 105, 79, 105, 74, 113, 98, 50, 85, 105, 76, 65, 48, 75, 73, 67, 74, 108, 101, 72, 65, 105, 79, 106, 69, 122, 77, 68, 65, 52, 77, 84, 107, 122, 79, 68, 65, 115, 68, 81, 111, 103, 73, 109, 104, 48, 100, 72, 65, 54, 76, 121, 57, 108, 101, 71, 70, 116, 99, 71, 120, 108, 76, 109, 78, 118, 98, 83, 57, 112, 99, 49, 57, 121, 98, 50, 57, 48, 73, 106, 112, 48, 99, 110, 86, 108, 102, 81] The ECDSA key consists of a public part, the EC point (x, y), and a private part d. The values of the ECDSA key used in this example, - presented as the byte arrays representing big endian integers are: + presented as the byte arrays representing three 256 bit big endian + integers are: +-----------+-------------------------------------------------------+ | Parameter | Value | | Name | | +-----------+-------------------------------------------------------+ | x | [127, 205, 206, 39, 112, 246, 196, 93, 65, 131, 203, | | | 238, 111, 219, 75, 123, 88, 7, 51, 53, 123, 233, 239, | | | 19, 186, 207, 110, 60, 123, 209, 84, 69] | | y | [199, 241, 68, 205, 27, 189, 155, 126, 135, 44, 223, | | | 237, 185, 238, 185, 244, 179, 105, 93, 110, 169, 11, | @@ -1060,28 +1252,26 @@ | x | [127, 205, 206, 39, 112, 246, 196, 93, 65, 131, 203, | | | 238, 111, 219, 75, 123, 88, 7, 51, 53, 123, 233, 239, | | | 19, 186, 207, 110, 60, 123, 209, 84, 69] | | y | [199, 241, 68, 205, 27, 189, 155, 126, 135, 44, 223, | | | 237, 185, 238, 185, 244, 179, 105, 93, 110, 169, 11, | | | 36, 173, 138, 70, 35, 40, 133, 136, 229, 173] | | d | [142, 155, 16, 158, 113, 144, 152, 191, 152, 4, 135, | | | 223, 31, 93, 119, 233, 203, 41, 96, 110, 190, 210, | | | 38, 59, 95, 87, 194, 19, 223, 132, 244, 178] | +-----------+-------------------------------------------------------+ - The ECDSA private part d is then passed to an ECDSA signing function, which also takes the curve type, P-256, the hash type, SHA-256, and - the bytes of the UTF-8 representation of the JWS Secured Input (which - is the same as the ASCII representation) as inputs. The result of - the digital signature is the EC point (R, S), where R and S are - unsigned integers. In this example, the R and S values, given as - byte arrays representing big endian integers are: + the bytes of the ASCII representation of the JWS Secured Input as + inputs. The result of the digital signature is the EC point (R, S), + where R and S are unsigned integers. In this example, the R and S + values, given as byte arrays representing big endian integers are: +--------+----------------------------------------------------------+ | Result | Value | | Name | | +--------+----------------------------------------------------------+ | R | [14, 209, 33, 83, 121, 99, 108, 72, 60, 47, 127, 21, 88, | | | 7, 212, 2, 163, 178, 40, 3, 58, 249, 124, 126, 23, 129, | | | 154, 195, 22, 158, 166, 101] | | S | [197, 10, 7, 211, 140, 60, 112, 229, 216, 241, 45, 175, | | | 8, 74, 84, 128, 166, 101, 144, 197, 242, 147, 80, 154, | @@ -1089,57 +1279,184 @@ +--------+----------------------------------------------------------+ Concatenating the S array to the end of the R array and base64url encoding the result produces this value for the Encoded JWS Signature (with line breaks for display purposes only): DtEhU3ljbEg8L38VWAfUAqOyKAM6-Xx-F4GawxaepmXFCgfTjDxw5djxLa8ISlSA pmWQxfKTUJqPP3-Kg6NU1Q A.3.2. Decoding - Decoding the JWS from this example requires processing the Encoded - JWS Header and Encoded JWS Payload exactly as done in the first - example. + Decoding the JWS requires base64url decoding the Encoded JWS Header, + Encoded JWS Payload, and Encoded JWS Signature to produce the JWS + Header, JWS Payload, and JWS Signature byte arrays. The byte array + containing the UTF-8 representation of the JWS Header is decoded into + the JWS Header string. A.3.3. Validating Since the "alg" parameter in the header is "ES256", we validate the ECDSA P-256 SHA-256 digital signature contained in the JWS Signature. If any of the validation steps fail, the JWS MUST be rejected. First, we validate that the JWS Header string is legal JSON. Validating the JWS Signature is a little different from the first example. First, we base64url decode the Encoded JWS Signature as in the previous examples but we then need to split the 64 member byte array that must result into two 32 byte arrays, the first R and the - second S. We then pass (x, y), (R, S) and the bytes of the UTF-8 - representation of the JWS Secured Input (which is the same as the - ASCII representation) to an ECDSA signature verifier that has been - configured to use the P-256 curve with the SHA-256 hash function. + second S. We then pass (x, y), (R, S) and the bytes of the ASCII + representation of the JWS Secured Input to an ECDSA signature + verifier that has been configured to use the P-256 curve with the + SHA-256 hash function. As explained in Section 3.4 of the JSON Web Algorithms (JWA) [JWA] - specification, the use of the k value in ECDSA means that we cannot + specification, the use of the K value in ECDSA means that we cannot validate the correctness of the digital signature in the same way we validated the correctness of the HMAC. Instead, implementations MUST use an ECDSA validator to validate the digital signature. -A.4. Example Plaintext JWS +A.4. JWS using ECDSA P-521 SHA-512 + +A.4.1. Encoding + + The JWS Header for this example differs from the previous example + because a different ECDSA curve and hash function are used. The JWS + Header used is: + {"alg":"ES512"} + + The following byte array contains the UTF-8 representation of the JWS + Header: + + [123, 34, 97, 108, 103, 34, 58, 34, 69, 83, 53, 49, 50, 34, 125] + + Base64url encoding these bytes yields this Encoded JWS Header value: + eyJhbGciOiJFUzUxMiJ9 + + The JWS Payload used in this example, is the ASCII string "Payload". + The representation of this string is the byte array: + + [80, 97, 121, 108, 111, 97, 100] + + Base64url encoding these bytes yields the Encoded JWS Payload value: + UGF5bG9hZA + + Concatenating the Encoded JWS Header, a period character, and the + Encoded JWS Payload yields this JWS Secured Input value: + eyJhbGciOiJFUzUxMiJ9.UGF5bG9hZA + + The ASCII representation of the JWS Secured Input is the following + byte array: + + [101, 121, 74, 104, 98, 71, 99, 105, 79, 105, 74, 70, 85, 122, 85, + 120, 77, 105, 74, 57, 46, 85, 71, 70, 53, 98, 71, 57, 104, 90, 65] + + The ECDSA key consists of a public part, the EC point (x, y), and a + private part d. The values of the ECDSA key used in this example, + presented as the byte arrays representing three 521 bit big endian + integers are: + + +-----------+-------------------------------------------------------+ + | Parameter | Value | + | Name | | + +-----------+-------------------------------------------------------+ + | x | [1, 233, 41, 5, 15, 18, 79, 198, 188, 85, 199, 213, | + | | 57, 51, 101, 223, 157, 239, 74, 176, 194, 44, 178, | + | | 87, 152, 249, 52, 235, 4, 227, 198, 186, 227, 112, | + | | 26, 87, 167, 145, 14, 157, 129, 191, 54, 49, 89, 232, | + | | 235, 203, 21, 93, 99, 73, 244, 189, 182, 204, 248, | + | | 169, 76, 92, 89, 199, 170, 193, 1, 164] | + | y | [0, 52, 166, 68, 14, 55, 103, 80, 210, 55, 31, 209, | + | | 189, 194, 200, 243, 183, 29, 47, 78, 229, 234, 52, | + | | 50, 200, 21, 204, 163, 21, 96, 254, 93, 147, 135, | + | | 236, 119, 75, 85, 131, 134, 48, 229, 203, 191, 90, | + | | 140, 190, 10, 145, 221, 0, 100, 198, 153, 154, 31, | + | | 110, 110, 103, 250, 221, 237, 228, 200, 200, 246] | + | d | [1, 142, 105, 111, 176, 52, 80, 88, 129, 221, 17, 11, | + | | 72, 62, 184, 125, 50, 206, 73, 95, 227, 107, 55, 69, | + | | 237, 242, 216, 202, 228, 240, 242, 83, 159, 70, 21, | + | | 160, 233, 142, 171, 82, 179, 192, 197, 234, 196, 206, | + | | 7, 81, 133, 168, 231, 187, 71, 222, 172, 29, 29, 231, | + | | 123, 204, 246, 97, 53, 230, 61, 130] | + +-----------+-------------------------------------------------------+ + + The ECDSA private part d is then passed to an ECDSA signing function, + which also takes the curve type, P-521, the hash type, SHA-512, and + the bytes of the ASCII representation of the JWS Secured Input as + inputs. The result of the digital signature is the EC point (R, S), + where R and S are unsigned integers. In this example, the R and S + values, given as byte arrays representing big endian integers are: + + +--------+----------------------------------------------------------+ + | Result | Value | + | Name | | + +--------+----------------------------------------------------------+ + | R | [1, 220, 12, 129, 231, 171, 194, 209, 232, 135, 233, | + | | 117, 247, 105, 122, 210, 26, 125, 192, 1, 217, 21, 82, | + | | 91, 45, 240, 255, 83, 19, 34, 239, 71, 48, 157, 147, | + | | 152, 105, 18, 53, 108, 163, 214, 68, 231, 62, 153, 150, | + | | 106, 194, 164, 246, 72, 143, 138, 24, 50, 129, 223, 133, | + | | 206, 209, 172, 63, 237, 119, 109] | + | S | [0, 111, 6, 105, 44, 5, 41, 208, 128, 61, 152, 40, 92, | + | | 61, 152, 4, 150, 66, 60, 69, 247, 196, 170, 81, 193, | + | | 199, 78, 59, 194, 169, 16, 124, 9, 143, 42, 142, 131, | + | | 48, 206, 238, 34, 175, 83, 203, 220, 159, 3, 107, 155, | + | | 22, 27, 73, 111, 68, 68, 21, 238, 144, 229, 232, 148, | + | | 188, 222, 59, 242, 103] | + +--------+----------------------------------------------------------+ + Concatenating the S array to the end of the R array and base64url + encoding the result produces this value for the Encoded JWS Signature + (with line breaks for display purposes only): + AdwMgeerwtHoh-l192l60hp9wAHZFVJbLfD_UxMi70cwnZOYaRI1bKPWROc-mZZq + wqT2SI-KGDKB34XO0aw_7XdtAG8GaSwFKdCAPZgoXD2YBJZCPEX3xKpRwcdOO8Kp + EHwJjyqOgzDO7iKvU8vcnwNrmxYbSW9ERBXukOXolLzeO_Jn + +A.4.2. Decoding + + Decoding the JWS requires base64url decoding the Encoded JWS Header, + Encoded JWS Payload, and Encoded JWS Signature to produce the JWS + Header, JWS Payload, and JWS Signature byte arrays. The byte array + containing the UTF-8 representation of the JWS Header is decoded into + the JWS Header string. + +A.4.3. Validating + + Since the "alg" parameter in the header is "ES512", we validate the + ECDSA P-521 SHA-512 digital signature contained in the JWS Signature. + If any of the validation steps fail, the JWS MUST be rejected. + + First, we validate that the JWS Header string is legal JSON. + + Validating the JWS Signature is similar to the previous example. + First, we base64url decode the Encoded JWS Signature as in the + previous examples but we then need to split the 132 member byte array + that must result into two 66 byte arrays, the first R and the second + S. We then pass (x, y), (R, S) and the bytes of the ASCII + representation of the JWS Secured Input to an ECDSA signature + verifier that has been configured to use the P-521 curve with the + SHA-512 hash function. + + As explained in Section 3.4 of the JSON Web Algorithms (JWA) [JWA] + specification, the use of the K value in ECDSA means that we cannot + validate the correctness of the digital signature in the same way we + validated the correctness of the HMAC. Instead, implementations MUST + use an ECDSA validator to validate the digital signature. + +A.5. Example Plaintext JWS The following example JWS Header declares that the encoded object is a Plaintext JWS: {"alg":"none"} Base64url encoding the bytes of the UTF-8 representation of the JWS Header yields this Encoded JWS Header: eyJhbGciOiJub25lIn0 - The JWS Payload used in this example, which follows, is the same as in the previous examples. Since the Encoded JWS Payload will therefore be the same, its computation is not repeated here. {"iss":"joe", "exp":1300819380, "http://example.com/is_root":true} The Encoded JWS Signature is the empty string. Concatenating these parts in the order Header.Payload.Signature with @@ -1144,21 +1461,104 @@ Concatenating these parts in the order Header.Payload.Signature with period characters between the parts yields this complete JWS (with line breaks for display purposes only): eyJhbGciOiJub25lIn0 . eyJpc3MiOiJqb2UiLA0KICJleHAiOjEzMDA4MTkzODAsDQogImh0dHA6Ly9leGFt cGxlLmNvbS9pc19yb290Ijp0cnVlfQ . -Appendix B. Notes on implementing base64url encoding without padding +Appendix B. "x5c" (X.509 Certificate Chain) Example + + The string below is an example of a certificate chain that could be + used as the value of an "x5c" (X.509 Certificate Chain) header + parameter, per Section 4.1.6. + -----BEGIN CERTIFICATE----- + MIIE3jCCA8agAwIBAgICAwEwDQYJKoZIhvcNAQEFBQAwYzELMAkGA1UEBhMCVVM + xITAfBgNVBAoTGFRoZSBHbyBEYWRkeSBHcm91cCwgSW5jLjExMC8GA1UECxMoR2 + 8gRGFkZHkgQ2xhc3MgMiBDZXJ0aWZpY2F0aW9uIEF1dGhvcml0eTAeFw0wNjExM + TYwMTU0MzdaFw0yNjExMTYwMTU0MzdaMIHKMQswCQYDVQQGEwJVUzEQMA4GA1UE + CBMHQXJpem9uYTETMBEGA1UEBxMKU2NvdHRzZGFsZTEaMBgGA1UEChMRR29EYWR + keS5jb20sIEluYy4xMzAxBgNVBAsTKmh0dHA6Ly9jZXJ0aWZpY2F0ZXMuZ29kYW + RkeS5jb20vcmVwb3NpdG9yeTEwMC4GA1UEAxMnR28gRGFkZHkgU2VjdXJlIENlc + nRpZmljYXRpb24gQXV0aG9yaXR5MREwDwYDVQQFEwgwNzk2OTI4NzCCASIwDQYJ + KoZIhvcNAQEBBQADggEPADCCAQoCggEBAMQt1RWMnCZM7DI161+4WQFapmGBWTt + wY6vj3D3HKrjJM9N55DrtPDAjhI6zMBS2sofDPZVUBJ7fmd0LJR4h3mUpfjWoqV + Tr9vcyOdQmVZWt7/v+WIbXnvQAjYwqDL1CBM6nPwT27oDyqu9SoWlm2r4arV3aL + GbqGmu75RpRSgAvSMeYddi5Kcju+GZtCpyz8/x4fKL4o/K1w/O5epHBp+YlLpyo + 7RJlbmr2EkRTcDCVw5wrWCs9CHRK8r5RsL+H0EwnWGu1NcWdrxcx+AuP7q2BNgW + JCJjPOq8lh8BJ6qf9Z/dFjpfMFDniNoW1fho3/Rb2cRGadDAW/hOUoz+EDU8CAw + EAAaOCATIwggEuMB0GA1UdDgQWBBT9rGEyk2xF1uLuhV+auud2mWjM5zAfBgNVH + SMEGDAWgBTSxLDSkdRMEXGzYcs9of7dqGrU4zASBgNVHRMBAf8ECDAGAQH/AgEA + MDMGCCsGAQUFBwEBBCcwJTAjBggrBgEFBQcwAYYXaHR0cDovL29jc3AuZ29kYWR + keS5jb20wRgYDVR0fBD8wPTA7oDmgN4Y1aHR0cDovL2NlcnRpZmljYXRlcy5nb2 + RhZGR5LmNvbS9yZXBvc2l0b3J5L2dkcm9vdC5jcmwwSwYDVR0gBEQwQjBABgRVH + SAAMDgwNgYIKwYBBQUHAgEWKmh0dHA6Ly9jZXJ0aWZpY2F0ZXMuZ29kYWRkeS5j + b20vcmVwb3NpdG9yeTAOBgNVHQ8BAf8EBAMCAQYwDQYJKoZIhvcNAQEFBQADggE + BANKGwOy9+aG2Z+5mC6IGOgRQjhVyrEp0lVPLN8tESe8HkGsz2ZbwlFalEzAFPI + UyIXvJxwqoJKSQ3kbTJSMUA2fCENZvD117esyfxVgqwcSeIaha86ykRvOe5GPLL + 5CkKSkB2XIsKd83ASe8T+5o0yGPwLPk9Qnt0hCqU7S+8MxZC9Y7lhyVJEnfzuz9 + p0iRFEUOOjZv2kWzRaJBydTXRE4+uXR21aITVSzGh6O1mawGhId/dQb8vxRMDsx + uxN89txJx9OjxUUAiKEngHUuHqDTMBqLdElrRhjZkAzVvb3du6/KFUJheqwNTrZ + EjYx8WnM25sgVjOuH0aBsXBTWVU+4= + -----END CERTIFICATE----- + -----BEGIN CERTIFICATE----- + MIIE+zCCBGSgAwIBAgICAQ0wDQYJKoZIhvcNAQEFBQAwgbsxJDAiBgNVBAcTG1Z + hbGlDZXJ0IFZhbGlkYXRpb24gTmV0d29yazEXMBUGA1UEChMOVmFsaUNlcnQsIE + luYy4xNTAzBgNVBAsTLFZhbGlDZXJ0IENsYXNzIDIgUG9saWN5IFZhbGlkYXRpb + 24gQXV0aG9yaXR5MSEwHwYDVQQDExhodHRwOi8vd3d3LnZhbGljZXJ0LmNvbS8x + IDAeBgkqhkiG9w0BCQEWEWluZm9AdmFsaWNlcnQuY29tMB4XDTA0MDYyOTE3MDY + yMFoXDTI0MDYyOTE3MDYyMFowYzELMAkGA1UEBhMCVVMxITAfBgNVBAoTGFRoZS + BHbyBEYWRkeSBHcm91cCwgSW5jLjExMC8GA1UECxMoR28gRGFkZHkgQ2xhc3MgM + iBDZXJ0aWZpY2F0aW9uIEF1dGhvcml0eTCCASAwDQYJKoZIhvcNAQEBBQADggEN + ADCCAQgCggEBAN6d1+pXGEmhW+vXX0iG6r7d/+TvZxz0ZWizV3GgXne77ZtJ6XC + APVYYYwhv2vLM0D9/AlQiVBDYsoHUwHU9S3/Hd8M+eKsaA7Ugay9qK7HFiH7Eux + 6wwdhFJ2+qN1j3hybX2C32qRe3H3I2TqYXP2WYktsqbl2i/ojgC95/5Y0V4evLO + tXiEqITLdiOr18SPaAIBQi2XKVlOARFmR6jYGB0xUGlcmIbYsUfb18aQr4CUWWo + riMYavx4A6lNf4DD+qta/KFApMoZFv6yyO9ecw3ud72a9nmYvLEHZ6IVDd2gWMZ + Eewo+YihfukEHU1jPEX44dMX4/7VpkI+EdOqXG68CAQOjggHhMIIB3TAdBgNVHQ + 4EFgQU0sSw0pHUTBFxs2HLPaH+3ahq1OMwgdIGA1UdIwSByjCBx6GBwaSBvjCBu + zEkMCIGA1UEBxMbVmFsaUNlcnQgVmFsaWRhdGlvbiBOZXR3b3JrMRcwFQYDVQQK + Ew5WYWxpQ2VydCwgSW5jLjE1MDMGA1UECxMsVmFsaUNlcnQgQ2xhc3MgMiBQb2x + pY3kgVmFsaWRhdGlvbiBBdXRob3JpdHkxITAfBgNVBAMTGGh0dHA6Ly93d3cudm + FsaWNlcnQuY29tLzEgMB4GCSqGSIb3DQEJARYRaW5mb0B2YWxpY2VydC5jb22CA + QEwDwYDVR0TAQH/BAUwAwEB/zAzBggrBgEFBQcBAQQnMCUwIwYIKwYBBQUHMAGG + F2h0dHA6Ly9vY3NwLmdvZGFkZHkuY29tMEQGA1UdHwQ9MDswOaA3oDWGM2h0dHA + 6Ly9jZXJ0aWZpY2F0ZXMuZ29kYWRkeS5jb20vcmVwb3NpdG9yeS9yb290LmNybD + BLBgNVHSAERDBCMEAGBFUdIAAwODA2BggrBgEFBQcCARYqaHR0cDovL2NlcnRpZ + mljYXRlcy5nb2RhZGR5LmNvbS9yZXBvc2l0b3J5MA4GA1UdDwEB/wQEAwIBBjAN + BgkqhkiG9w0BAQUFAAOBgQC1QPmnHfbq/qQaQlpE9xXUhUaJwL6e4+PrxeNYiY+ + Sn1eocSxI0YGyeR+sBjUZsE4OWBsUs5iB0QQeyAfJg594RAoYC5jcdnplDQ1tgM + QLARzLrUc+cb53S8wGd9D0VmsfSxOaFIqII6hR8INMqzW/Rn453HWkrugp++85j + 09VZw== + -----END CERTIFICATE----- + -----BEGIN CERTIFICATE----- + MIIC5zCCAlACAQEwDQYJKoZIhvcNAQEFBQAwgbsxJDAiBgNVBAcTG1ZhbGlDZXJ + 0IFZhbGlkYXRpb24gTmV0d29yazEXMBUGA1UEChMOVmFsaUNlcnQsIEluYy4xNT + AzBgNVBAsTLFZhbGlDZXJ0IENsYXNzIDIgUG9saWN5IFZhbGlkYXRpb24gQXV0a + G9yaXR5MSEwHwYDVQQDExhodHRwOi8vd3d3LnZhbGljZXJ0LmNvbS8xIDAeBgkq + hkiG9w0BCQEWEWluZm9AdmFsaWNlcnQuY29tMB4XDTk5MDYyNjAwMTk1NFoXDTE + 5MDYyNjAwMTk1NFowgbsxJDAiBgNVBAcTG1ZhbGlDZXJ0IFZhbGlkYXRpb24gTm + V0d29yazEXMBUGA1UEChMOVmFsaUNlcnQsIEluYy4xNTAzBgNVBAsTLFZhbGlDZ + XJ0IENsYXNzIDIgUG9saWN5IFZhbGlkYXRpb24gQXV0aG9yaXR5MSEwHwYDVQQD + ExhodHRwOi8vd3d3LnZhbGljZXJ0LmNvbS8xIDAeBgkqhkiG9w0BCQEWEWluZm9 + AdmFsaWNlcnQuY29tMIGfMA0GCSqGSIb3DQEBAQUAA4GNADCBiQKBgQDOOnHK5a + vIWZJV16vYdA757tn2VUdZZUcOBVXc65g2PFxTXdMwzzjsvUGJ7SVCCSRrCl6zf + N1SLUzm1NZ9WlmpZdRJEy0kTRxQb7XBhVQ7/nHk01xC+YDgkRoKWzk2Z/M/VXwb + P7RfZHM047QSv4dk+NoS/zcnwbNDu+97bi5p9wIDAQABMA0GCSqGSIb3DQEBBQU + AA4GBADt/UG9vUJSZSWI4OB9L+KXIPqeCgfYrx+jFzug6EILLGACOTb2oWH+heQ + C1u+mNr0HZDzTuIYEZoDJJKPTEjlbVUjP9UNV+mWwD5MlM/Mtsq2azSiGM5bUMM + j4QssxsodyamEwCW/POuZ6lcg5Ktz885hZo+L7tdEy8W9ViH0Pd + -----END CERTIFICATE----- + +Appendix C. Notes on implementing base64url encoding without padding This appendix describes how to implement base64url encoding and decoding functions without padding based upon standard base64 encoding and decoding functions that do use padding. To be concrete, example C# code implementing these functions is shown below. Similar code could be used in other languages. static string base64urlencode(byte [] arg) { string s = Convert.ToBase64String(arg); // Standard base64 encoder @@ -1192,29 +1592,71 @@ '=' padding characters are added; if the length mod 4 is 3, one '=' padding character is added; if the length mod 4 is 1, the input is malformed. An example correspondence between unencoded and encoded values follows. The byte sequence below encodes into the string below, which when decoded, reproduces the byte sequence. 3 236 255 224 193 A-z_4ME -Appendix C. Acknowledgements +Appendix D. Acknowledgements Solutions for signing JSON content were previously explored by Magic Signatures [MagicSignatures], JSON Simple Sign [JSS], and Canvas Applications [CanvasApp], all of which influenced this draft. Dirk Balfanz, Yaron Y. Goland, John Panzer, and Paul Tarjan all made significant contributions to the design of this specification. -Appendix D. Document History + My thanks to Axel Nennker for his early implementation and feedback + on the JWS and JWE specifications. + +Appendix E. Document History + + [[ to be removed by the RFC editor before publication as an RFC ]] + + -03 + + o Added the "cty" (content type) header parameter for declaring type + information about the secured content, as opposed to the "typ" + (type) header parameter, which declares type information about + this object. + + o Added "Collision Resistant Namespace" to the terminology section. + + o Reference ITU.X690.1994 for DER encoding. + + o Added an example JWS using ECDSA P-521 SHA-512. This has + particular illustrative value because of the use of the 521 bit + integers in the key and signature values. This is also an example + in which the payload is not a base64url encoded JSON object. + + o Added an example "x5c" value. + + o No longer say "the UTF-8 representation of the JWS Secured Input + (which is the same as the ASCII representation)". Just call it + "the ASCII representation of the JWS Secured Input". + + o Added Registration Template sections for defined registries. + + o Added Registry Contents sections to populate registry values. + + o Changed name of the JSON Web Signature and Encryption "typ" Values + registry to be the JSON Web Signature and Encryption Type Values + registry, since it is used for more than just values of the "typ" + parameter. + + o Moved registries JSON Web Signature and Encryption Header + Parameters and JSON Web Signature and Encryption Type Values to + the JWS specification. + + o Numerous editorial improvements. -02 o Clarified that it is an error when a "kid" value is included and no matching key is found. o Removed assumption that "kid" (key ID) can only refer to an asymmetric key. o Clarified that JWSs with duplicate Header Parameter Names MUST be