draft-ietf-nfsv4-multi-domain-fs-reqs-08.txt   draft-ietf-nfsv4-multi-domain-fs-reqs-09.txt 
NFSv4 Working Group W. Adamson NFSv4 Working Group W. Adamson
Internet-Draft NetApp Internet-Draft NetApp
Intended status: Standards Track N. Williams Intended status: Standards Track N. Williams
Expires: December 24, 2016 Cryptonector Expires: December 31, 2016 Cryptonector
June 22, 2016 June 29, 2016
Multiple NFSv4 Domain Namespace Deployment Guidelines Multiple NFSv4 Domain Namespace Deployment Guidelines
draft-ietf-nfsv4-multi-domain-fs-reqs-08 draft-ietf-nfsv4-multi-domain-fs-reqs-09
Abstract Abstract
This document discusses issues relevant to the deployment of the This document provides guidance on the deployment of the NFSv4
NFSv4 protocols in situations allowing for the construction of an protocols for the construction of an NFSv4 file name space in
NFSv4 file namespace supporting the use of multiple NFSv4 domains and environments with multiple NFSv4 Domains. To participate in an NFSv4
utilizing multi-domain capable file systems. Also described are mulit-domain file name space, the server must offer a mulit-domain
constraints on name resolution and security services appropriate to capable file system and support RPCSEC_GSS for user authentication.
the administration of such a system. Such a namespace is a suitable In most instances, the server must also support identity mapping
way to enable a Federated File System supporting the use of multiple services.
NFSv4 domains.
Requirements Language Requirements Language
The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT", The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",
"SHOULD", "SHOULD NOT", "RECOMMENDED", "MAY", and "OPTIONAL" in this "SHOULD", "SHOULD NOT", "RECOMMENDED", "MAY", and "OPTIONAL" in this
document are to be interpreted as described in [RFC2119]. document are to be interpreted as described in [RFC2119].
Status of This Memo Status of This Memo
This Internet-Draft is submitted in full conformance with the This Internet-Draft is submitted in full conformance with the
skipping to change at page 1, line 44 skipping to change at page 1, line 43
Internet-Drafts are working documents of the Internet Engineering Internet-Drafts are working documents of the Internet Engineering
Task Force (IETF). Note that other groups may also distribute Task Force (IETF). Note that other groups may also distribute
working documents as Internet-Drafts. The list of current Internet- working documents as Internet-Drafts. The list of current Internet-
Drafts is at http://datatracker.ietf.org/drafts/current/. Drafts is at http://datatracker.ietf.org/drafts/current/.
Internet-Drafts are draft documents valid for a maximum of six months Internet-Drafts are draft documents valid for a maximum of six months
and may be updated, replaced, or obsoleted by other documents at any and may be updated, replaced, or obsoleted by other documents at any
time. It is inappropriate to use Internet-Drafts as reference time. It is inappropriate to use Internet-Drafts as reference
material or to cite them other than as "work in progress." material or to cite them other than as "work in progress."
This Internet-Draft will expire on December 24, 2016. This Internet-Draft will expire on December 31, 2016.
Copyright Notice Copyright Notice
Copyright (c) 2016 IETF Trust and the persons identified as the Copyright (c) 2016 IETF Trust and the persons identified as the
document authors. All rights reserved. document authors. All rights reserved.
This document is subject to BCP 78 and the IETF Trust's Legal This document is subject to BCP 78 and the IETF Trust's Legal
Provisions Relating to IETF Documents Provisions Relating to IETF Documents
(http://trustee.ietf.org/license-info) in effect on the date of (http://trustee.ietf.org/license-info) in effect on the date of
publication of this document. Please review these documents publication of this document. Please review these documents
carefully, as they describe your rights and restrictions with respect carefully, as they describe your rights and restrictions with respect
to this document. Code Components extracted from this document must to this document. Code Components extracted from this document must
include Simplified BSD License text as described in Section 4.e of include Simplified BSD License text as described in Section 4.e of
the Trust Legal Provisions and are provided without warranty as the Trust Legal Provisions and are provided without warranty as
described in the Simplified BSD License. described in the Simplified BSD License.
Table of Contents Table of Contents
1. Introduction . . . . . . . . . . . . . . . . . . . . . . . . 2 1. Introduction . . . . . . . . . . . . . . . . . . . . . . . . 2
2. Terminology . . . . . . . . . . . . . . . . . . . . . . . . . 3 2. Terminology . . . . . . . . . . . . . . . . . . . . . . . . . 3
3. Identity Mapping . . . . . . . . . . . . . . . . . . . . . . 5 3. Federated File System . . . . . . . . . . . . . . . . . . . . 5
3.1. NFSv4 Server Identity Mapping . . . . . . . . . . . . . . . 5 4. Identity Mapping . . . . . . . . . . . . . . . . . . . . . . 5
3.2. NFSv4 Client Identity Mapping . . . . . . . . . . . . . . . 6 4.1. NFSv4 Server Identity Mapping . . . . . . . . . . . . . . . 5
4. Stand-alone NFSv4 Domain Deployment Examples . . . . . . . . 6 4.2. NFSv4 Client Identity Mapping . . . . . . . . . . . . . . . 6
4.1. AUTH_SYS with Stringified UID/GID . . . . . . . . . . . . . 7 5. Stand-alone NFSv4 Domain Deployment Examples . . . . . . . . 7
4.2. AUTH_SYS with name@domain . . . . . . . . . . . . . . . . . 7 5.1. AUTH_SYS with Stringified UID/GID . . . . . . . . . . . . . 7
4.3. RPCSEC_GSS with name@domain . . . . . . . . . . . . . . . . 7 5.2. AUTH_SYS with name@domain . . . . . . . . . . . . . . . . . 8
5. Multi-domain Constraints to the NFSv4 Protocol . . . . . . . 8 5.3. RPCSEC_GSS with name@domain . . . . . . . . . . . . . . . . 8
5.1. Name@domain Constraints . . . . . . . . . . . . . . . . . . 8 6. Multi-domain Constraints to the NFSv4 Protocol . . . . . . . 9
5.1.1. NFSv4 Domain and DNS Services . . . . . . . . . . . . . . 9 6.1. Name@domain Constraints . . . . . . . . . . . . . . . . . . 9
5.1.2. NFSv4 Domain and Name Services . . . . . . . . . . . . . 9 6.1.1. NFSv4 Domain and DNS Services . . . . . . . . . . . . . . 9
5.2. RPC Security Constraints . . . . . . . . . . . . . . . . . 9 6.1.2. NFSv4 Domain and Name Services . . . . . . . . . . . . . 10
5.2.1. NFSv4 Domain and Security Services . . . . . . . . . . . 10 6.2. RPC Security Constraints . . . . . . . . . . . . . . . . . 10
6. Resolving Multi-domain Authorization Information . . . . . . 11 6.2.1. NFSv4 Domain and Security Services . . . . . . . . . . . 11
7. Stand-alone Examples and Multiple NFSv4 Domain Namespaces . . 12 7. Resolving Multi-domain Authorization Information . . . . . . 11
8. Security Considerations . . . . . . . . . . . . . . . . . . . 12 8. Stand-alone Examples and Multiple NFSv4 Domain Namespaces . . 12
9. IANA Considerations . . . . . . . . . . . . . . . . . . . . . 13 9. Security Considerations . . . . . . . . . . . . . . . . . . . 13
10. References . . . . . . . . . . . . . . . . . . . . . . . . . 13 10. IANA Considerations . . . . . . . . . . . . . . . . . . . . . 14
10.1. Normative References . . . . . . . . . . . . . . . . . . . 13 11. References . . . . . . . . . . . . . . . . . . . . . . . . . 14
10.2. Informative References . . . . . . . . . . . . . . . . . . 14 11.1. Normative References . . . . . . . . . . . . . . . . . . . 14
Appendix A. Acknowledgments . . . . . . . . . . . . . . . . . . 15 11.2. Informative References . . . . . . . . . . . . . . . . . . 15
Authors' Addresses . . . . . . . . . . . . . . . . . . . . . . . 15 Appendix A. Acknowledgments . . . . . . . . . . . . . . . . . . 16
Authors' Addresses . . . . . . . . . . . . . . . . . . . . . . . 16
1. Introduction 1. Introduction
An NFSv4 domain is defined as a set of users and groups named by a The NFSv4 protocols NFSv4.0 [RFC7530], NFSv4.1 [RFC5661], NFSv4.2
particular domain using the NFSv4 name@domain syntax. This includes [I-D.NFSv4.2] introduce the concept of an NFS Domain. An NFSv4
NFSv4.0 [RFC7530], NFSv4.1 [RFC5661], and minor versions yet to be Domain is defined as a set of users and groups using the NFSv4
published. Often, a computer which acts as an NFSv4 client and name@domain user and group identification syntax with the same
always acts on behalf of users belonging to a particular NFSv4 domain specified @domain.
is thought of a part of that NFSv4 domain. Similarly, a computer
acting as an NFSv4 server that is only aware of users within a
particular NFSv4 domain may be thought of as part of that NFSv4
domain.
In this document, the term "multi-domain" always refers to multiple
NFSv4 domains.
The Federated File System (FedFS) [RFC5716] describes the Previous versions of the NFS protocol, such as NFSv3 [RFC1813], use
requirements and administrative tools to construct a uniform NFSv4 the UNIX-centric user identification mechanism of numeric user and
file server based namespace that is capable of spanning a whole group ID for the uid3 and gid3 [RFC1813] file attributes and for
enterprise and that is easy to manage. identity in the ONCRPC [RFC5531] authsys_parms AUTH_SYS credential.
Section 6.1 of [RFC2624] notes that the use of UNIX-centric numeric
IDs limits the scale of NFS to large local work groups. UNIX-centric
numeric IDs are not unique across NFSv3 deployments and so are not
designed for internet scaling achieved by taking into account
multiple naming domains and multiple naming mechanisms (see
Section 6.2). The NFSv4 Domain's use of the name@domain syntax
provides this internet scaling by allowing servers and clients to
translate between the external name@domain string representation to a
local or internal numeric (or other identifier) representation which
matches internal implementation needs.
The FedFS is the standardized method of constructing and Multi-domain deployments require support for unique identities across
administrating an enterprise-wide NFSv4 filesystem, and so is the deployment's name services and security services, as well as the
referenced in this document. The issues with multi-domain use of multi-domain file systems capable of the on-disk
deployments described in this document apply to all multi-domain representation of identities belonging to multiple NFSv4 Domains.
deployments, whether they are run as a FedFS or not. The name@domain identity syntax can provide unique identities and so
enables the NFSv4 multi-domain file name space.
Stand-alone NFSv4 domain deployments can be run in many ways. While Unlike previous versions of NFS, the NFSv4 protocols define a
a FedFS can be run within all stand-alone NFSv4 domain configurations referral mechanism (Section 8.4.3 [RFC7530]) that allows a single
some of these configurations (Section 4) are not compatible with server or a set of servers to present a multi-server namespace that
joining a multi-domain FedFS namespace. encompasses file systems located on multiple servers. This enables
the establishment of site-wide, organization-wide, or even a truly
global file name space.
Multi-domain deployments require support for global identities in The NFSv4 protocols name@domain identity syntax and referral
name services and security services, and file systems capable of the mechanism along with the use of RPCSEC_GSS security mechanisms
on-disk representation of identities belonging to multiple NFSv4 enables the construction of an NFSv4 multi-domain file name space.
domains. Typically, stand-alone NFSv4 domain deployments only
provide support for identities belonging to a single NFSv4 domain.
This document describes administration-related constraints applying This document provides guidance on the deployment of the NFSv4
to the deployment of the NFSv4 protocols in environments supporting protocols for the construction of an NFSv4 file name space in
the construction of an NFSv4 file system namespace supporting the use environments with multiple NFSv4 Domains. To participate in an NFSv4
of multiple NFSv4 domains and utilizing multi-domain capable file mulit-domain file name space, the server must offer a mulit-domain
systems. Also described are constraints regarding the name capable file system and support RPCSEC_GSS [RFC2203] for user
resolution and security services appropriate to such a deployment. authentication. In most instances, the server must also support
Such a namespace is a suitable way to enable a Federated File System identity mapping services.
supporting the use of multiple NFSv4 domains.
2. Terminology 2. Terminology
NFSv4 Domain: A set of users and groups using the NFSv4
name@domain user and group identification syntax with the same
specified @domain.
Stand-alone NFSv4 Domain: A deployment of the NFSv4 protocols and
NFSv4 file name space in an environment with a single NFSv4
Domain.
Local representation of identity: A representation of a user or a
group of users capable of being stored persistently within a file
system. Typically such representations are identical to the form
in which users and groups are represented within internal server
API's. Examples are numeric id's such as a uidNumber (UID),
gidNumber (GID) [RFC2307], or a Windows Security Identifier (SID)
[CIFS]. In some case the identifier space for user and groups
overlap, requiring anyone using such an id to know a priori
whether the identifier is for a user or a group.
Unique identity: An on-the-wire form of identity that is unique
across an NFSv4 multi-domain name space that can be mapped to a
local representation. For example, the NFSv4 name@domain or the
Kerberos principal@REALM.
Multi-domain: In this document, the term "multi-domain" always
refers to multiple NFSv4 Domains.
Multi-domain capable filesystem: A local filesystem that uses a
local ID form that can represent NFSv4 identities from multiple
domains.
Principal: an RPCSEC_GSS [RFC2203] authentication identity.
Usually, but not always, a user; rarely, if ever, a group;
sometimes a host or server.
Authorization Context: A collection of information about a
principal such as username, userID, group membership, etcetera
used in authorization decisions.
Stringified UID or GID: NFSv4 owner and group strings that consist
of decimal numeric values with no leading zeros, and which do not
contain an '@' sign. See Section 5.9 [RFC5661].
Name Service: Facilities that provides the mapping between {NFSv4 Name Service: Facilities that provides the mapping between {NFSv4
domain, group or user name} and the appropriate local Domain, group or user name} and the appropriate local
representation of identity. Also includes facilities providing representation of identity. Also includes facilities providing
mapping between a security principal and local representation of mapping between a security principal and local representation of
identity. Can be applied to global identities or principals from identity. Can be applied to unique identities or principals from
within local and remote domains. Often provided by a Directory within local and remote domains. Often provided by a Directory
Service such as LDAP. Service such as LDAP.
Name Service Switch (nsswitch): a facility in provides a variety Name Service Switch (nsswitch): a facility in provides a variety
of sources for common configuration databases and name resolution of sources for common configuration databases and name resolution
mechanisms. mechanisms.
FedFS: The Federated File System (FedFS) [RFC5716] describes the
requirements and administrative tools to construct a uniform NFSv4
file server based name space that is capable of spanning a whole
enterprise and that is easy to manage.
Domain: This term is used in multiple contexts where it has Domain: This term is used in multiple contexts where it has
different meanings. Definitions of "nfsv4 domain" and "multi- different meanings. Definitions of "nfsv4 domain" and "multi-
domain" have already appeared above in Section 1. Below we domain" have already appeared above in Section 1. Below we
provide other specific definitions used this document. provide other specific definitions used this document.
DNS domain: a set of computers, services, or any internet DNS domain: a set of computers, services, or any internet
resource identified by an DNS domain name [RFC1034]. resource identified by an DNS domain name [RFC1034].
Security realm or domain: a set of configured security Security realm or domain: a set of configured security
providers, users, groups, security roles, and security policies providers, users, groups, security roles, and security policies
running a single security protocol and administered by a single running a single security protocol and administered by a single
entity, for example a Kerberos realm. entity, for example a Kerberos realm.
FedFS domain: A file namespace that can cross multiple shares FedFS domain: A file name space that can cross multiple shares
on multiple file servers using file-access protocols such as on multiple file servers using file-access protocols such as
NFSv4. A FedFS domain is typically a single administrative NFSv4. A FedFS domain is typically a single administrative
entity, and has a name that is similar to a DNS domain name. entity, and has a name that is similar to a DNS domain name.
Also known as a Federation. Also known as a Federation.
Administrative domain: a set of users, groups, computers, and Administrative domain: a set of users, groups, computers, and
services administered by a single entity. Can include multiple services administered by a single entity. Can include multiple
DNS domains, NFSv4 domains, security domains, and FedFS DNS domains, NFSv4 domains, security domains, and FedFS
domains. domains.
Local representation of identity: A representation of a user or a 3. Federated File System
group of users capable of being stored persistently within a file
system. Typically such representations are identical to the form
in which users and groups are represented within internal server
API's. Examples are numeric id's such as a uidNumber (UID),
gidNumber (GID) [RFC2307], or a Windows Security Identifier (SID)
[CIFS]. In some case the identifier space for user and groups
overlap, requiring anyone using such an id to know a priori
whether the identifier is for a user or a group.
Global identity: An on-the-wire globally unique form of identity
that can be mapped to a local representation. For example, the
NFSv4 name@domain or the Kerberos principal@REALM.
Multi-domain capable filesystem: A local filesystem that uses a
local ID form that can represent NFSv4 identities from multiple
domains.
Principal: an RPCSEC_GSS [RFC2203] authentication identity.
Usually, but not always, a user; rarely, if ever, a group;
sometimes a host or server.
Authorization Context: A collection of information about a The FedFS is the standardized method of constructing and
principal such as username, userID, group membership, etcetera administrating an enterprise-wide NFSv4 filesystem, and so is
used in authorization decisions. referenced in this document. The issues with multi-domain
deployments described in this document apply to all NFSv4 multi-
domain deployments, whether they are run as a FedFS or not.
Stringified UID or GID: NFSv4 owner and group strings that consist Stand-alone NFSv4 Domain deployments can be run in many ways. While
of decimal numeric values with no leading zeros, and which do not a FedFS can be run within all stand-alone NFSv4 domain configurations
contain an '@' sign. See Section 5.9 "Interpreting owner and some of these configurations (Section 5) are not compatible with
owner_group" [RFC5661]. joining a multi-domain FedFS name space.
3. Identity Mapping 4. Identity Mapping
3.1. NFSv4 Server Identity Mapping 4.1. NFSv4 Server Identity Mapping
NFSv4 servers deal with two kinds of identities: authentication NFSv4 servers deal with two kinds of identities: authentication
identities (referred to here as "principals") and authorization identities (referred to here as "principals") and authorization
identities ("users" and "groups" of users). NFSv4 supports multiple identities ("users" and "groups" of users). NFSv4 supports multiple
authentication methods, each authenticating an "initiator principal" authentication methods, each authenticating an "initiator principal"
(typically representing a user) to an "acceptor principal" (always (typically representing a user) to an "acceptor principal" (always
corresponding to the NFSv4 server). NFSv4 does not prescribe how to corresponding to the NFSv4 server). NFSv4 does not prescribe how to
represent authorization identities on file systems. All file access represent authorization identities on file systems. All file access
decisions constitute "authorization" and are made by NFSv4 servers decisions constitute "authorization" and are made by NFSv4 servers
using authorization context information and file metadata related to using authorization context information and file metadata related to
authorization, such as a file's access control list (ACL). authorization, such as a file's access control list (ACL).
NFSv4 servers may be required to perform two kinds of mappings NFSv4 servers may be required to perform two kinds of mappings
depending upon what authentication and authorization information is depending upon what authentication and authorization information is
sent on the wire, and what is stored in the exported file system. sent on the wire, and what is stored in the exported file system.
For example, if an authentication identity such as a Kerberos For example, if an authentication identity such as a Kerberos
principal is sent with authorization information such a "privilege principal is sent with authorization information such a "privilege
attribute certificate" (PAC) [PAC] then mapping is not required. See attribute certificate" (PAC) [PAC] then mapping is not required (see
Section 6. Section 7).
1. Auth-to-authz: A mapping between the authentication identity and 1. Auth-to-authz: A mapping between the authentication identity and
the authorization context information. the authorization context information.
2. Wire-to-disk: A mapping between the on-the-wire authorization 2. Wire-to-disk: A mapping between the on-the-wire authorization
identity representation and the on-disk authorization identity identity representation and the on-disk authorization identity
representation. representation.
A Name Service such as LDAP often provides these mappings. A Name Service such as LDAP often provides these mappings.
skipping to change at page 6, line 12 skipping to change at page 6, line 39
but some require multi-domain capable name resolution and security but some require multi-domain capable name resolution and security
services in order to interoperate in a multi-domain environment. services in order to interoperate in a multi-domain environment.
NFSv4 servers use these mappings for: NFSv4 servers use these mappings for:
1. File access: Both the auth-to-authz and the wire-to-disk mappings 1. File access: Both the auth-to-authz and the wire-to-disk mappings
may be required for file access decisions. may be required for file access decisions.
2. Meta-data setting and listing: The auth-to-authz mapping is 2. Meta-data setting and listing: The auth-to-authz mapping is
usually required to service file metadata setting or listing usually required to service file metadata setting or listing
requests such as ACL or unix permission setting or listing. This requests such as ACL or UNIX permission setting or listing. This
mapping is needed because NFSv4 messages use identity mapping is needed because NFSv4 messages use identity
representations of the form name@domain which normally differs representations of the form name@domain which normally differs
from the server's local representation of identity. from the server's local representation of identity.
3.2. NFSv4 Client Identity Mapping 4.2. NFSv4 Client Identity Mapping
A client setting the owner or group attribute will often need access A client setting the owner or group attribute will often need access
to identity mapping services. This is because API's within the to identity mapping services. This is because API's within the
client will specify the identity in a local form (e.g UNIX using a client will specify the identity in a local form (e.g UNIX using a
uid/gid) so that when stringified id's cannot be used, the id must be UID/GID) so that when stringified id's cannot be used, the id must be
converted to a global form. converted to a unique identity form.
A client obtaining values for the owner or group attributes will A client obtaining values for the owner or group attributes will
similarly need access to identity mapping services. This is because similarly need access to identity mapping services. This is because
the client API will need these attributes in a local form, as above. the client API will need these attributes in a local form, as above.
As a result name services need to be available to convert the global As a result name services need to be available to convert the unique
identity to a local form. identity to a local form.
Note that each of these situations arises because client-side API's Note that each of these situations arises because client-side API's
require a particular local identity representation. The need for require a particular local identity representation. The need for
mapping services would not arise if the clients could use the global mapping services would not arise if the clients could use the unique
representation of identity directly. representation of identity directly.
4. Stand-alone NFSv4 Domain Deployment Examples 5. Stand-alone NFSv4 Domain Deployment Examples
In order to service as many environments as possible, the NFSv4 In order to service as many environments as possible, the NFSv4
protocol is designed to allow administrators freedom to configure protocol is designed to allow administrators freedom to configure
their NFSv4 domains as they please. their NFSv4 domains as they please.
Stand-alone NFSv4 domains can be run in many ways. Here we list some Stand-alone NFSv4 Domains can be run in many ways. Here we list some
stand-alone NFSv4 domain deployment examples focusing on the NFSv4 stand-alone NFSv4 Domain deployment examples focusing on the NFSv4
server's use of name service mappings (Section 3.1) and security server's use of name service mappings (Section 4.1) and security
services deployment to demonstrate the need for some multiple NFSv4 services deployments to demonstrate the need for some multiple NFSv4
domain constraints to the NFSv4 protocol, name service configuration, Domain constraints to the NFSv4 protocol, name service configuration,
and security service choices. and security service choices.
Because all on-disk identities participating in a stand-alone NFSv4 Typically, stand-alone NFSv4 Domain deployments only provide support
domain belong to the same NFSv4 domain, stand-alone NFSv4 domain for identities belonging to a single NFSv4 Domain. Because all on-
deployments have no requirement for exporting multi-domain capable disk identities participating in a stand-alone NFSv4 Domain belong to
file systems. the same NFSv4 Domain, stand-alone NFSv4 Domain deployments have no
requirement for exporting multi-domain capable file systems.
These examples are for a NFSv4 server exporting a POSIX UID/GID based These examples are for a NFSv4 server exporting a POSIX UID/GID based
file system, a typical deployment. These examples are listed in the file system, a typical deployment. These examples are listed in the
order of increasing NFSv4 administrative complexity. order of increasing NFSv4 administrative complexity.
4.1. AUTH_SYS with Stringified UID/GID 5.1. AUTH_SYS with Stringified UID/GID
This example is the closest NFSv4 gets to being run as NFSv3 as there This example is the closest NFSv4 gets to being run as NFSv3 as there
is no need for a name service for file metadata listing. is no need for a name service for file metadata listing.
File access: The AUTH_SYS RPC credential provides a UID as the File access: The AUTH_SYS RPC credential [RFC1831] provides a UID as
authentication identity, and a list of GIDs as authorization context the authentication identity, and a list of GIDs as authorization
information. File access decisions require no name service context information. File access decisions require no name service
interaction as the on-the-wire and on-disk representation are the interaction as the on-the-wire and on-disk representation are the
same and the auth-to-authz UID and GID authorization context same and the auth-to-authz UID and GID authorization context
information is provided in the RPC credential. information is provided in the RPC credential.
Meta-data setting and listing: When the NFSv4 clients and servers Meta-data setting and listing: When the NFSv4 clients and servers
implement a stringified UID/GID scheme, where a stringified UID or implement a stringified UID/GID scheme, where a stringified UID or
GID is used for the NFSv4 name@domain on-the-wire identity, then a GID is used for the NFSv4 name@domain on-the-wire identity, then a
name service is not required for file metadata listing as the UID or name service is not required for file metadata listing as the UID or
GID can be constructed from the stringified form on the fly by the GID can be constructed from the stringified form on the fly by the
server. server.
4.2. AUTH_SYS with name@domain 5.2. AUTH_SYS with name@domain
Another possibility is to express identity using the form Another possibility is to express identity using the form
'name@domain', rather than using a stringified UID/GID scheme for 'name@domain', rather than using a stringified UID/GID scheme for
file metadata setting and listing. file metadata setting and listing.
File access: This is the same as in Section 4.1. File access: This is the same as in Section 5.1.
Meta-data setting and listing: The NFSv4 server will need to use a Meta-data setting and listing: The NFSv4 server will need to use a
name service for the wire-to-disk mappings to map between the on-the- name service for the wire-to-disk mappings to map between the on-the-
wire name@domain syntax and the on-disk UID/GID representation. wire name@domain syntax and the on-disk UID/GID representation.
Often, the NFSv4 server will use the nsswitch interface for these Often, the NFSv4 server will use the nsswitch interface for these
mappings. A typical use of the nsswitch name service interface uses mappings. A typical use of the nsswitch name service interface uses
no domain component, just the uid attribute [RFC2307] (or login name) no domain component, just the UID attribute [RFC2307] (or login name)
as the name component. This is no issue in a stand-alone NFSv4 as the name component. This is no issue in a stand-alone NFSv4
domain deployment as the NFSv4 domain is known to the NFSv4 server domain deployment as the NFSv4 Domain is known to the NFSv4 server
and can combined with the login name to form the name@domain syntax and can combined with the login name to form the name@domain syntax
after the return of the name service call. after the return of the name service call.
4.3. RPCSEC_GSS with name@domain 5.3. RPCSEC_GSS with name@domain
RPCSEC_GSS uses GSS-API [RFC2743] security mechanisms to securely RPCSEC_GSS uses GSS-API [RFC2743] security mechanisms to securely
authenticate users to servers. The most common mechanism is Kerberos authenticate users to servers. The most common mechanism is Kerberos
[RFC4121]. [RFC4121].
This final example adds the use of RPCSEC_GSS with the Kerberos 5 GSS This final example adds the use of RPCSEC_GSS with the Kerberos 5 GSS
security mechanism. security mechanism.
File Access: The forms of GSS principal names are mechanism-specific. File Access: The forms of GSS principal names are mechanism-specific.
For Kerberos these are of the form principal@REALM. Sometimes For Kerberos these are of the form principal@REALM. Sometimes
skipping to change at page 8, line 22 skipping to change at page 8, line 51
delivered with authentication has timely update considerations (i.e., delivered with authentication has timely update considerations (i.e.,
generally it's not possible to get a timely update). File access generally it's not possible to get a timely update). File access
decisions therefore require a wire-to-disk mapping of the GSS decisions therefore require a wire-to-disk mapping of the GSS
principal to a UID, and an auth-to-authz mapping to obtain the list principal to a UID, and an auth-to-authz mapping to obtain the list
of GIDs as the authorization context. of GIDs as the authorization context.
Implementations must never blindly drop a Kerberos REALM name from a Implementations must never blindly drop a Kerberos REALM name from a
Kerberos principal name to obtain a POSIX username, but they may be Kerberos principal name to obtain a POSIX username, but they may be
configured to do so for specific REALMs. configured to do so for specific REALMs.
Meta-data setting and listing: This is the same as in Section 4.2. Meta-data setting and listing: This is the same as in Section 5.2.
5. Multi-domain Constraints to the NFSv4 Protocol 6. Multi-domain Constraints to the NFSv4 Protocol
Joining NFSv4 domains under a single file namespace imposes slightly Joining NFSv4 Domains under a single file name space imposes slightly
on the NFSv4 administration freedom. Here we describe the required on the NFSv4 administration freedom. Here we describe the required
constraints. constraints.
5.1. Name@domain Constraints 6.1. Name@domain Constraints
NFSv4 uses a syntax of the form "name@domain" as the on-the-wire NFSv4 uses a syntax of the form "name@domain" as the on-the-wire
representation of the "who" field of an NFSv4 access control entry representation of the "who" field of an NFSv4 access control entry
(ACE) for users and groups. This design provides a level of (ACE) for users and groups. This design provides a level of
indirection that allows NFSv4 clients and servers with different indirection that allows NFSv4 clients and servers with different
internal representations of authorization identity to interoperate internal representations of authorization identity to interoperate
even when referring to authorization identities from different NFSv4 even when referring to authorization identities from different NFSv4
domains. Domains.
Multi-domain capable sites need to meet the following requirements in Multi-domain capable sites need to meet the following requirements in
order to ensure that NFSv4 clients and servers can map between order to ensure that NFSv4 clients and servers can map between
name@domain and internal representations reliably. While some of name@domain and internal representations reliably. While some of
these constraints are basic assumptions in NFSv4.0 [RFC7530] and these constraints are basic assumptions in NFSv4.0 [RFC7530] and
NFSv4.1 [RFC5661], they need to be clearly stated for the multi- NFSv4.1 [RFC5661], they need to be clearly stated for the multi-
domain case. domain case.
o The NFSv4 domain portion of name@domain MUST be unique within the o The NFSv4 Domain portion of name@domain MUST be unique within the
multi-domain namespace. See [RFC5661] section 5.9 "Interpreting multi-domain name space. See [RFC5661] section 5.9 "Interpreting
owner and owner_group" for a discussion on NFSv4 domain owner and owner_group" for a discussion on NFSv4 Domain
configuration. configuration.
o The name portion of name@domain MUST be unique within the o The name portion of name@domain MUST be unique within the
specified NFSv4 domain. specified NFSv4 Domain.
Due to UID and GID collisions, stringified UID/GIDs MUST NOT be used Due to UID and GID collisions, stringified UID/GIDs MUST NOT be used
in a multi-domain deployment. This means that multi-domain-capable in a multi-domain deployment. This means that multi-domain-capable
servers MUST reject requests that use stringified UID/GIDs. servers MUST reject requests that use stringified UID/GIDs.
5.1.1. NFSv4 Domain and DNS Services 6.1.1. NFSv4 Domain and DNS Services
Here we address the relationship between NFSv4 domain name and DNS Here we address the relationship between NFSv4 Domain name and DNS
domain name in a multi-domain deployment. domain name in a multi-domain deployment.
The definition of an NFSv4 domain name needs clarification to work in The definition of an NFSv4 Domain name, the @domain portion of the
a multi-domain file system namespace. Section 5.9 [RFC5661] loosely name@domain syntax, needs clarification to work in a multi-domain
defines the NFSv4 domain name as a DNS domain name. This loose file system name space. Section 5.9 [RFC5661] loosely defines the
definition for the NFSv4 domain is a good one, as DNS domain names NFSv4 Domain name as a DNS domain name. This loose definition for
are globally unique. As noted above in Section 5.1, any choice of the NFSv4 Domain name is a good one, as DNS domain names are globally
NFSv4 domain name can work within a stand-alone NFSv4 domain unique. As noted above in Section 6.1, any choice of NFSv4 Domain
deployment whereas the NFSv4 domain is required to be unique in a name can work within a stand-alone NFSv4 Domain deployment whereas
multi-domain deployment. the NFSv4 Domain name is required to be unique across a multi-domain
deployment.
A typical configuration is that there is a single NFSv4 domain that A typical configuration is that there is a single NFSv4 Domain that
is served by a single DNS domain. In this case the NFSv4 domain name is served by a single DNS domain. In this case the NFSv4 Domain name
can be the same as the DNS domain name. can be the same as the DNS domain name.
An NFSv4 domain can span multiple DNS domains. In this case, one of An NFSv4 Domain can span multiple DNS domains. In this case, one of
the DNS domain names can be chosen as the NFSv4 domain name. the DNS domain names can be chosen as the NFSv4 Domain name.
Multiple NFSv4 domains can also share a DNS domain. In this case, Multiple NFSv4 Domains can also share a DNS domain. In this case,
only one of the NFSv4 domains can use the DNS domain name, the other only one of the NFSv4 Domains can use the DNS domain name, the other
NFSv4 domains must choose another unique NFSv4 domain name. NFSv4 Domains must choose another unique NFSv4 Domain name.
5.1.2. NFSv4 Domain and Name Services 6.1.2. NFSv4 Domain and Name Services
As noted above in Section 5.1, each name@domain is unique across the As noted above in Section 6.1, each name@domain is unique across the
multi-domain namespace and maps, on each NFSv4 server, to the local multi-domain name space and maps, on each NFSv4 server, to the local
representation of identity used by that server. Typically, this representation of identity used by that server. Typically, this
representation consists of an indication of the particular domain representation consists of an indication of the particular domain
combined with the uid/gid corresponding to the name component. To combined with the UID/GID corresponding to the name component. To
support such an arrangement, each NFSv4 domain needs to have a single support such an arrangement, each NFSv4 Domain needs to have a single
name resolution service capable of converting the names defined name resolution service capable of converting the names defined
within the domain to the corresponding local representation. within the domain to the corresponding local representation.
5.2. RPC Security Constraints 6.2. RPC Security Constraints
As described in [RFC5661] section 2.2.1.1 "RPC Security Flavors": As described in [RFC5661] section 2.2.1.1 "RPC Security Flavors":
NFSv4.1 clients and servers MUST implement RPCSEC_GSS. NFSv4.1 clients and servers MUST implement RPCSEC_GSS.
(This requirement to implement is not a requirement (This requirement to implement is not a requirement
to use.) Other flavors, such as AUTH_NONE, and AUTH_SYS, to use.) Other flavors, such as AUTH_NONE,
MAY be implemented as well. and AUTH_SYS, MAY be implemented as well.
The underlying RPCSEC_GSS security mechanism used in a multi-domain
namespace is REQUIRED to employ a method of cross NFSv4 domain trust
so that a principal from a security service in one NFSv4 domain can
be authenticated in another NFSv4 domain that uses a security service
with the same security mechanism. Kerberos is an example of such a
security service.
The AUTH_NONE security flavor can be useful in a multi-domain The underlying RPCSEC_GSS [RFC2203] GSS-API security mechanism used
deployment to grant universal access to public data without any in a multi-domain name space is REQUIRED to employ a method of cross
credentials. NFSv4 Domain trust so that a principal from a security service in one
NFSv4 Domain can be authenticated in another NFSv4 Domain that uses a
security service with the same security mechanism. Kerberos is an
example of such a security service.
The AUTH_SYS security flavor uses a host-based authentication model The AUTH_NONE [RFC1831] security flavor can be useful in a multi-
where the weakly authenticated host (the NFSv4 client) asserts the domain deployment to grant universal read-only access to public data
user's authorization identities using small integers, uidNumber, and without any credentials.
gidNumber [RFC2307], as user and group identity representations.
Because this authorization ID representation has no domain component,
AUTH_SYS can only be used in a namespace where all NFSv4 clients and
servers share an [RFC2307] name service. A shared name service is
required because uidNumbers and gidNumbers are passed in the RPC
credential; there is no negotiation of namespace in AUTH_SYS.
Collisions can occur if multiple name services are used, so AUTH_SYS
MUST NOT be used in a multi-domain file system deployment.
While the AUTH_SYS security mechanism can not be used (indeed, The AUTH_SYS security flavor [RFC1831] uses a host-based
AUTH_SYS is obsolete and of limited use for all of NFS), RPCSEC_GSSv3 authentication model where the weakly authenticated host (the NFSv4
[I-D.rpcsec-gssv3] can completely replace all uses of AUTH_SYS in a client) asserts the user's authorization identities using small
multi-domain file system. Like AUTH_SYS, and unlike RPCSEC_GSSv1/2, integers, uidNumber, and gidNumber [RFC2307], as user and group
RPCSEC_GSSv3 allows the client to assert and contribute knowledge of identity representations. Because this authorization ID
the user process' authorization context. representation has no domain component, AUTH_SYS can only be used in
a name space where all NFSv4 clients and servers share an [RFC2307]
name service. A shared name service is required because uidNumbers
and gidNumbers are passed in the RPC credential; there is no
negotiation of name space in AUTH_SYS. Collisions can occur if
multiple name services are used, so AUTH_SYS MUST NOT be used in a
multi-domain file system deployment.
5.2.1. NFSv4 Domain and Security Services 6.2.1. NFSv4 Domain and Security Services
As noted above in Section 5.2, caveat AUTH_NULL, multiple NFSv4 As noted above in Section 6.2, caveat AUTH_NONE, multiple NFSv4
domain security services are RPCSEC_GSS based with the Kerberos 5 Domain security services are RPCSEC_GSS based with the Kerberos 5
security mechanism being the most commonly (and as of this writing, security mechanism being the most commonly (and as of this writing,
the only) deployed service. the only) deployed service.
A single Kerberos 5 security service per NFSv4 domain with the upper A single Kerberos 5 security service per NFSv4 Domain with the upper
case NFSv4 domain name as the Kerberos 5 REALM name is a common case NFSv4 Domain name as the Kerberos 5 REALM name is a common
deployment. deployment.
Multiple security services per NFSv4 domain is allowed, and brings Multiple security services per NFSv4 Domain is allowed, and brings
the issue of mapping multiple Kerberos 5 principal@REALMs to the same the issue of mapping multiple Kerberos 5 principal@REALMs to the same
local ID. Methods of achieving this are beyond the scope of this local ID. Methods of achieving this are beyond the scope of this
document. document.
6. Resolving Multi-domain Authorization Information 7. Resolving Multi-domain Authorization Information
When an RPCSEC_GSS principal is seeking access to files on an NFSv4 When an RPCSEC_GSS principal is seeking access to files on an NFSv4
server, after authenticating the principal, the server must obtain in server, after authenticating the principal, the server must obtain in
a secure manner the principal's authorization context information a secure manner the principal's authorization context information
from an authoritative source such as the name service in the from an authoritative source such as the name service in the
principal's NFSv4 domain. principal's NFSv4 Domain.
In the stand-alone NFSv4 domain case where the principal is seeking In the stand-alone NFSv4 Domain case where the principal is seeking
access to files on an NFSv4 server in the principal's home NFSv4 access to files on an NFSv4 server in the principal's home NFSv4
domain, the server administrator has knowledge of the local policies Domain, the server administrator has knowledge of the local policies
and methods for obtaining the principal's authorization information and methods for obtaining the principal's authorization information
and the mappings to local representation of identity from an and the mappings to local representation of identity from an
authoritative source. E.g., the administrator can configure secure authoritative source. E.g., the administrator can configure secure
access to the local NFSv4 domain name service. access to the local NFSv4 domain name service.
In the multi-domain case where a principal is seeking access to files In the multi-domain case where a principal is seeking access to files
on an NFSv4 server not in the principal's home NFSv4 domain, the on an NFSv4 server not in the principal's home NFSv4 Domain, the
NFSv4 server may be required to contact the remote name service in NFSv4 server may be required to contact the remote name service in
the principals NFSv4 domain. In this case there is no assumption of: the principals NFSv4 Domain. In this case there is no assumption of:
o Remote name service configuration knowledge. o Remote name service configuration knowledge.
o The syntax of the remote authorization context information o The syntax of the remote authorization context information
presented to the NFSv4 server by the remote name service for presented to the NFSv4 server by the remote name service for
mapping to a local representation. mapping to a local representation.
There are several methods the NFSv4 server can use to obtain the There are several methods the NFSv4 server can use to obtain the
NFSv4 domain authoritative authorization information for a remote NFSv4 Domain authoritative authorization information for a remote
principal from an authoritative source. While any detail is beyond principal from an authoritative source. While any detail is beyond
the scope of this document, some general methods are listed here. the scope of this document, some general methods are listed here.
1. A mechanism specific GSS-API authorization payload containing 1. A mechanism specific GSS-API authorization payload containing
credential authorization data such as a "privilege attribute credential authorization data such as a "privilege attribute
certificate" (PAC) [PAC] or a "principal authentication data" certificate" (PAC) [PAC] or a "principal authentication data"
(PAD) [I-D.sorce-krbwg-general-pac]. This is the preferred (PAD) [I-D.sorce-krbwg-general-pac]. This is the preferred
method as the payload is delivered as part of GSS-API method as the payload is delivered as part of GSS-API
authentication, avoids requiring any knowledge of the remote authentication, avoids requiring any knowledge of the remote
authoritative service configuration, and its syntax is well authoritative service configuration, and its syntax is well
known. known.
2. When there is a security agreement between the local and remote 2. When there is a security agreement between the local and remote
NFSv4 domain name services plus regular update data feeds, the NFSv4 Domain name services plus regular update data feeds, the
NFSv4 server local NFSv4 domain name service can be authoritative NFSv4 server local NFSv4 Domain name service can be authoritative
for principal's in the remote NFSv4 domain. In this case, the for principal's in the remote NFSv4 Domain. In this case, the
NFSv4 server makes a query to it's local NFSv4 domain name NFSv4 server makes a query to it's local NFSv4 Domain name
service just as it does when servicing a local domain principal. service just as it does when servicing a local domain principal.
While this requires detailed knowledge of the remote NFSv4 While this requires detailed knowledge of the remote NFSv4
domains name service for the update data feeds, the authorization Domains name service for the update data feeds, the authorization
context information presented to the NFSv4 server is in the same context information presented to the NFSv4 server is in the same
form as a query for a local principal. form as a query for a local principal.
3. An authenticated direct query from the NFSv4 server to the 3. An authenticated direct query from the NFSv4 server to the
principal's NFSv4 domain authoritative name service. This principal's NFSv4 Domain authoritative name service. This
requires the NFSv4 server to have detailed knowledge of the requires the NFSv4 server to have detailed knowledge of the
remote NFSv4 domain's authoritative name service and detailed remote NFSv4 Domain's authoritative name service and detailed
knowledge of the syntax of the resultant authorization context knowledge of the syntax of the resultant authorization context
information. information.
7. Stand-alone Examples and Multiple NFSv4 Domain Namespaces 8. Stand-alone Examples and Multiple NFSv4 Domain Namespaces
Revisiting the stand-alone (Section 4) NFSv4 domain deployment Revisiting the stand-alone (Section 5) NFSv4 Domain deployment
examples, we note that due to the use of AUTH_SYS, neither examples, we note that due to the use of AUTH_SYS, neither
Section 4.1 nor Section 4.2 configurations are suitable for multi- Section 5.1 nor Section 5.2 configurations are suitable for multi-
domain deployments. domain deployments.
The Section 4.3 configuration example can participate in a multi- The Section 5.3 configuration example can participate in a multi-
domain namespace deployment if: domain name space deployment if:
o The NFSv4 domain name is unique across the namespace. o The NFSv4 Domain name is unique across the name space.
o All exported file systems are multi-domain capable. o All exported file systems are multi-domain capable.
o A secure method is used to resolve remote NFSv4 domain principals o A secure method is used to resolve remote NFSv4 Domain principals
authorization information from an authoritative source. authorization information from an authoritative source.
8. Security Considerations 9. Security Considerations
This RFC discusses security throughout. All the security This RFC discusses security throughout. All the security
considerations of the relevant protocols, such as NFSv4.0 [RFC7530], considerations of the relevant protocols, such as NFSv4.0 [RFC7530],
NFSv4.1 [RFC5661], RPCSEC_GSS [RFC2203], GSS-API [RFC4121], LDAP NFSv4.1 [RFC5661], RPCSEC_GSS [RFC2203], GSS-API [RFC4121], LDAP
[RFC4511], Requirements for Federated FS [RFC5716], FedFS Namespace [RFC4511], Requirements for Federated FS [RFC5716], FedFS Namespace
DB Protocol [RFC7532], FedFS Administration Protocol [RFC7533], FedFS DB Protocol [RFC7532], FedFS Administration Protocol [RFC7533], FedFS
Security Addendum [I-D.lever-fedfs-security-addendum] apply. Security Addendum [I-D.lever-fedfs-security-addendum] apply.
Authentication and authorization across administrative domains Authentication and authorization across administrative domains
presents security considerations, most of which are treated presents security considerations, most of which are treated
skipping to change at page 13, line 15 skipping to change at page 13, line 36
o latency in propagation of granting of authorizations o latency in propagation of granting of authorizations
o complications in establishing a foreign domain's users' complete o complications in establishing a foreign domain's users' complete
authorization context: only parts may be available to servers authorization context: only parts may be available to servers
o privacy considerations in a federated environment o privacy considerations in a federated environment
Most of these are security considerations of the mechanisms used to Most of these are security considerations of the mechanisms used to
authenticate users to servers and servers to users, and of the authenticate users to servers and servers to users, and of the
mechanisms used to evaluate a user's authorization context. We don't mechanisms used to evaluate a user's authorization context.
treat them fully here, but implementors should study the protocols in
question to get a more complete set of security considerations.
Note that clients/users may also need to evaluate a server's
authorization context when using labeled security [I-D.NFSv4.2]
(e.g., is the server authorized to handle content at a given security
level, for the given compartments). Even when not using labeled
security, since there could be many realms (credential issuer) for a
given server, it's important to verify that the server a client is
talking to has a credential for the name the client has for the
server, and that that credential's issuer (i.e., its realm) is
allowed to issue it. Usually the service principle realm
authorization function is implemented by the security mechanism, but
the implementor should check this.
Implementors may be tempted to assume that realm (or "issuer") and Implementors may be tempted to assume that realm (or "issuer") and
NFSv4 domain are roughly the same thing, but they are not. NFSv4 Domain are roughly the same thing, but they are not.
Configuration and/or lookup protocols (such as LDAP) and associated Configuration and/or lookup protocols (such as LDAP) and associated
schemas are generally required in order to evaluate a user schemas are generally required in order to evaluate a user
principal's authorization context. In the simplest scheme a server principal's authorization context (see Section 7). In the simplest
has access to a database mapping all known principal names to scheme a server has access to a database mapping all known principal
usernames whose authorization context can be evaluated using names to usernames whose authorization context can be evaluated using
operating system interfaces that deal in usernames rather than operating system interfaces that deal in usernames rather than
principal names. principal names.
9. IANA Considerations Note that clients may also need to evaluate a server's authorization
context when using labeled security [I-D.NFSv4.2] (e.g., is the
server authorized to handle content at a given security level, for
the given client process subject label).
When the server accepts user credential from more than one realm, it
is important to remember that the server must verify that the client
it is talking to has a credential for the name the client has
presented the server, and that that credential's issuer (i.e., its
realm) is allowed to issue it. Usually the service principal realm
authorization function is implemented by the security mechanism, but
the implementor should check this.
10. IANA Considerations
There are no IANA considerations in this document. There are no IANA considerations in this document.
10. References 11. References
10.1. Normative References 11.1. Normative References
[I-D.NFSv4.2] [I-D.NFSv4.2]
Haynes, T., "NFS Version 4 Minor Version 2", draft-ietf- Haynes, T., "NFS Version 4 Minor Version 2", draft-ietf-
nfsv4-minorversion2-36 (Work In Progress), April 2015. nfsv4-minorversion2-36 (Work In Progress), April 2015.
[I-D.rpcsec-gssv3]
Adamson, W. and N. Williams, "Remote Procedure Call (RPC)
Security Version 3", draft-ietf-nfsv4-rpcsec-gssv3-12
(Work In Progress), July 2015.
[RFC1034] Mockapetris, P., "Domain names - concepts and facilities", [RFC1034] Mockapetris, P., "Domain names - concepts and facilities",
STD 13, RFC 1034, DOI 10.17487/RFC1034, November 1987, STD 13, RFC 1034, DOI 10.17487/RFC1034, November 1987,
<http://www.rfc-editor.org/info/rfc1034>. <http://www.rfc-editor.org/info/rfc1034>.
[RFC1813] Callaghan, B., Pawlowski, B., and P. Staubach, "NFS
Version 3 Protocol Specification", RFC 1813, DOI 10.17487/
RFC1813, June 1995,
<http://www.rfc-editor.org/info/rfc1813>.
[RFC1831] Srinivasan, R., "RPC: Remote Procedure Call Protocol
Specification Version 2", RFC 1831, DOI 10.17487/RFC1831,
August 1995, <http://www.rfc-editor.org/info/rfc1831>.
[RFC2119] Bradner, S., "Key words for use in RFCs to Indicate [RFC2119] Bradner, S., "Key words for use in RFCs to Indicate
Requirement Levels", BCP 14, RFC 2119, DOI 10.17487/ Requirement Levels", BCP 14, RFC 2119, DOI 10.17487/
RFC2119, March 1997, RFC2119, March 1997,
<http://www.rfc-editor.org/info/rfc2119>. <http://www.rfc-editor.org/info/rfc2119>.
[RFC2203] Eisler, M., Chiu, A., and L. Ling, "RPCSEC_GSS Protocol [RFC2203] Eisler, M., Chiu, A., and L. Ling, "RPCSEC_GSS Protocol
Specification", RFC 2203, DOI 10.17487/RFC2203, September Specification", RFC 2203, DOI 10.17487/RFC2203, September
1997, <http://www.rfc-editor.org/info/rfc2203>. 1997, <http://www.rfc-editor.org/info/rfc2203>.
[RFC2743] Linn, J., "Generic Security Service Application Program [RFC2743] Linn, J., "Generic Security Service Application Program
skipping to change at page 14, line 39 skipping to change at page 15, line 16
Version 5 Generic Security Service Application Program Version 5 Generic Security Service Application Program
Interface (GSS-API) Mechanism: Version 2", RFC 4121, DOI Interface (GSS-API) Mechanism: Version 2", RFC 4121, DOI
10.17487/RFC4121, July 2005, 10.17487/RFC4121, July 2005,
<http://www.rfc-editor.org/info/rfc4121>. <http://www.rfc-editor.org/info/rfc4121>.
[RFC4511] Sermersheim, J., Ed., "Lightweight Directory Access [RFC4511] Sermersheim, J., Ed., "Lightweight Directory Access
Protocol (LDAP): The Protocol", RFC 4511, DOI 10.17487/ Protocol (LDAP): The Protocol", RFC 4511, DOI 10.17487/
RFC4511, June 2006, RFC4511, June 2006,
<http://www.rfc-editor.org/info/rfc4511>. <http://www.rfc-editor.org/info/rfc4511>.
[RFC5531] Thurlow, R., "RPC: Remote Procedure Call Protocol
Specification Version 2", RFC 5531, DOI 10.17487/RFC5531,
May 2009, <http://www.rfc-editor.org/info/rfc5531>.
[RFC5661] Shepler, S., Ed., Eisler, M., Ed., and D. Noveck, Ed., [RFC5661] Shepler, S., Ed., Eisler, M., Ed., and D. Noveck, Ed.,
"Network File System (NFS) Version 4 Minor Version 1 "Network File System (NFS) Version 4 Minor Version 1
Protocol", RFC 5661, DOI 10.17487/RFC5661, January 2010, Protocol", RFC 5661, DOI 10.17487/RFC5661, January 2010,
<http://www.rfc-editor.org/info/rfc5661>. <http://www.rfc-editor.org/info/rfc5661>.
[RFC7530] Haynes, T., Ed. and D. Noveck, Ed., "Network File System [RFC7530] Haynes, T., Ed. and D. Noveck, Ed., "Network File System
(NFS) Version 4 Protocol", RFC 7530, DOI 10.17487/RFC7530, (NFS) Version 4 Protocol", RFC 7530, DOI 10.17487/RFC7530,
March 2015, <http://www.rfc-editor.org/info/rfc7530>. March 2015, <http://www.rfc-editor.org/info/rfc7530>.
10.2. Informative References 11.2. Informative References
[CIFS] Microsoft Corporation, "[MS-CIFS] -- v20130118 Common [CIFS] Microsoft Corporation, "[MS-CIFS] -- v20130118 Common
Internet File System (CIFS) Protocol", January 2013. Internet File System (CIFS) Protocol", January 2013.
[I-D.lever-fedfs-security-addendum] [I-D.lever-fedfs-security-addendum]
Lever, C., "Federated Filesystem Security Addendum", Lever, C., "Federated Filesystem Security Addendum",
draft-cel-nfsv4-federated-fs-security-addendum-05 (Active draft-cel-nfsv4-federated-fs-security-addendum-05 (Active
Internet Draft), May 2016. Internet Draft), May 2016.
[I-D.sorce-krbwg-general-pac] [I-D.sorce-krbwg-general-pac]
skipping to change at page 15, line 23 skipping to change at page 16, line 5
Progress awaiting merge with other document ), June 2011. Progress awaiting merge with other document ), June 2011.
[PAC] Brezak, J., "Utilizing the Windows 2000 Authorization Data [PAC] Brezak, J., "Utilizing the Windows 2000 Authorization Data
in Kerberos Tickets for Access Control to Resources", in Kerberos Tickets for Access Control to Resources",
October 2002. October 2002.
[RFC2307] Howard, L., "An Approach for Using LDAP as a Network [RFC2307] Howard, L., "An Approach for Using LDAP as a Network
Information Service", RFC 2307, DOI 10.17487/RFC2307, Information Service", RFC 2307, DOI 10.17487/RFC2307,
March 1998, <http://www.rfc-editor.org/info/rfc2307>. March 1998, <http://www.rfc-editor.org/info/rfc2307>.
[RFC2624] Shepler, S., "NFS Version 4 Design Considerations", RFC
2624, DOI 10.17487/RFC2624, June 1999,
<http://www.rfc-editor.org/info/rfc2624>.
[RFC5716] Lentini, J., Everhart, C., Ellard, D., Tewari, R., and M. [RFC5716] Lentini, J., Everhart, C., Ellard, D., Tewari, R., and M.
Naik, "Requirements for Federated File Systems", RFC 5716, Naik, "Requirements for Federated File Systems", RFC 5716,
DOI 10.17487/RFC5716, January 2010, DOI 10.17487/RFC5716, January 2010,
<http://www.rfc-editor.org/info/rfc5716>. <http://www.rfc-editor.org/info/rfc5716>.
[RFC7532] Lentini, J., Tewari, R., and C. Lever, Ed., "Namespace [RFC7532] Lentini, J., Tewari, R., and C. Lever, Ed., "Namespace
Database (NSDB) Protocol for Federated File Systems", RFC Database (NSDB) Protocol for Federated File Systems", RFC
7532, DOI 10.17487/RFC7532, March 2015, 7532, DOI 10.17487/RFC7532, March 2015,
<http://www.rfc-editor.org/info/rfc7532>. <http://www.rfc-editor.org/info/rfc7532>.
 End of changes. 91 change blocks. 
249 lines changed or deleted 289 lines changed or added

This html diff was produced by rfcdiff 1.45. The latest version is available from http://tools.ietf.org/tools/rfcdiff/