Networking Working Group A. Brandt Internet Draft Zensys, Inc. Intended status: Informational G. Porcu Expires: January 2009 Telecom ItaliaJuly 14,September 11, 2008 Home Automation Routing Requirement in Low Power and Lossy Networksdraft-ietf-roll-home-routing-reqs-02draft-ietf-roll-home-routing-reqs-03 Status of this Memo By submitting this Internet-Draft, each author represents that any applicable patent or other IPR claims of which he or she is aware have been or will be disclosed, and any of which he or she becomes aware will be disclosed, in accordance with Section 6 of BCP 79. Internet-Drafts are working documents of the Internet Engineering Task Force (IETF), its areas, and its working groups. Note that other groups may also distribute working documents asInternet-Drafts.Internet- Drafts. Internet-Drafts are draft documents valid for a maximum of six months and may be updated, replaced, or obsoleted by other documents at any time. It is inappropriate to use Internet-Drafts as reference material or to cite them other than as "work in progress." The list of current Internet-Drafts can be accessed at http://www.ietf.org/ietf/1id-abstracts.txt The list of Internet-Draft Shadow Directories can be accessed at http://www.ietf.org/shadow.html This Internet-Draft will expire onJanuary 14,March 11, 2009. Copyright Notice Copyright (C) The IETF Trust (2008). Abstract This document presents home control and automation application specific requirements forROuting inRouting Over Low power and Lossy networks (ROLL). In a modern home, a high number of wireless devices are used for a wide set of purposes. Examples includelighting control,actuators (relay, light dimmer, heatingcontrol, sensors, leak detectors, healthcare systemsvalve), sensors (wall switch, water leak, blood pressure) and advancedremote controls.controllers. Because such devices only cover a limited radio range,multi-hoprouting is often required. The aim of this document is to specify the routing requirements for networks comprising such constrained devices in a homenetworkcontrol and automation environment. Requirements Language The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT", "SHOULD", "SHOULD NOT", "RECOMMENDED", "MAY", and "OPTIONAL" in this document are to be interpreted as described in RFC-2119 [RFC2119]. Table of Contents Terminology......................................................3 1.Terminology....................................................3Introduction..................................................5 2.Introduction...................................................3 3.Homeautomation applications...................................4 3.1. Turning off the house when leaving........................4 3.2.Automation Applications..................................6 2.1. Lighting Application In Action...........................6 2.2. EnergyconservationConservation andoptimizing energy consumption.....5 3.3.Optimizing Energy Consumption....6 2.3. Moving aremote control around............................5 3.4.Remote Control Around...........................7 2.4. Addinga new lamp module to the system....................6 3.5.A New Module To The System........................7 2.5. Controllingbattery operated window shades................6 3.6.Battery Operated Window Shades...............8 2.6. Remotevideo surveillance.................................6 3.7. Healthcare................................................7 3.7.1.Video Surveillance................................8 2.7. Healthcare...............................................8 2.7.1. At-homehealth reporting.............................7 3.7.2.Health Reporting............................9 2.7.2. At-homehealth monitoring............................8 3.7.3. Healthcare routing considerations....................8 3.8.Health Monitoring...........................9 2.8. Alarmsystems.............................................8 3.9. Battery-powered devices...................................9 4.Systems............................................9 3. UniquerequirementsRouting Requirements ofhome automation applications............9 4.1.Home Automation Applications..10 3.1. Support ofgroupcast......................................9 4.2.Groupcast....................................11 3.2. Constraint-basedRouting.................................10 4.3. Support of Mobility......................................10 4.4.Routing................................12 3.3. Support ofPeriodical Scanning...........................11 4.5. Scalability..............................................11 4.6.Mobility.....................................12 3.4. Sleeping Nodes..........................................13 3.5. Healthcare Routing......................................13 3.6. Scalability.............................................13 3.7. ConvergenceTime.........................................11 4.7. Manageability............................................12 5.Time........................................14 3.8. Manageability...........................................14 3.9. Stability...............................................14 4. TrafficPattern...............................................12 6.Pattern..............................................14 5. Openissues...................................................13 7.Issues..................................................15 6. SecurityConsiderations.......................................13 8.Considerations......................................15 7. IANAConsiderations...........................................13Considerations..........................................15 8. Acknowledgments..............................................15 9.Acknowledgments...............................................13 10. References...................................................14 10.1.References...................................................16 9.1. NormativeReferences....................................14 10.2.References....................................16 9.2. InformativeReferences..................................14References..................................17 Disclaimer ofValidity...........................................15 1.Validity..........................................18 Terminology ROLL:ROuting inRouting Over Low-power and Lossy networksROLL device:A ROLLnetworknodewith constrained CPU and memory resources; potentially constrained power resources.may be classified as sensor, actuator or controller. Access Point: The access point is an infrastructure device that connectsthe low power and lossya ROLL networksystemto theInternet, possibly via a customer premises local area network (LAN). LAN: Local Area Network. PAN: Personal Area Network. A geographically limited wireless network based on e.g. 802.15.4Internet orZ-Wave radio.some backbone network. Actuator: Network node which performs some physical action. Dimmers and relays are examples of actuators. If sufficiently powered, actuator nodes may participate in routing network messages. Channel: Radio frequency band used totransmit a modulated signal carryingcarry network packets. Controller: Network node that controls actuators. Control decisions may be based on sensor readings, sensor events, scheduled actions or incoming commands from the Internet or other backbone networks. If sufficiently powered, controller nodes may participate in routing network messages. Downstream: Data direction traveling from a Local Area Network (LAN) to a Personal Area Network (PAN) device.Upstream: Data direction traveling from a PANDR: Demand-Response The mechanism of users adjusting their power consumption in response to actual pricing of power. DSM: Demand Side Management Process allowing power utilities to enable and disable loads in consumer premises. Where DR relies on voluntary action from users, DSM may be based on enrollment in aLAN device. Sensor:formal program. LAN: Local Area Network. PAN: Personal Area Network. APAN devicegeographically limited wireless network based on e.g. 802.15.4 or Z-Wave radio. PDA Personal Digital Assistant. A small, handheld computer. PLC Power Line Communication RAM Random Access Memory Sensor: Network node that measures data and/or detects an event.2. Introduction This document presents the home control and automation application specificThe sensor may generate a trap message to notify a controller or directly activate an actuator. If sufficiently powered, sensor nodes may participate in routing network messages. Upstream: Data direction traveling from a PAN to a LAN device. 1. Introduction This document presents home control and automation application specific requirements for RoutinginOver Low power and LossyNetworksnetworks (ROLL). In a modern home, a high number of wireless devices are used for a wide set of purposes. Examples includelighting control modules, heating control panels,actuators (relay, lightsensors, temperature sensors, gas/water leak detectors, motion detectors, video surveillance, healthcare systemsdimmer, heating valve), sensors (wall switch, water leak, blood pressure) and advancedremote controls.controllers. Basic home control modules such as wall switches and plug-in modules may be turned into an advanced home automation solution via the use of an IP-enabled application responding to events generated by wall switches, motion sensors, light sensors, rain sensors, and so on. Network nodes may be sensors and actuators at the same time. An example is a wall switch for replacement in existing buildings. The push buttons may generate events for a controller node or for activating other actuator nodes. At the same time, a built-in relay may act as actuator for a controller or other remote sensors. Becausesuch devicesROLL nodes only cover a limited radio range,multi-hoprouting is often required. These devices are usually highly constrained in term of resources such as battery and memory and operate in unstable environments. Persons moving around in a house, opening or closing a door or starting a microwave oven affect the reception of weak radio signals. Reflection and absorption may cause a reliable radio link to turn unreliable for a period of time and then being reusable again, thus the term "lossy". Unlike other categories of PANs, the connected home area is very much consumer-oriented. Theimplicationsimplication on network nodesin this aspect,is that devices are very cost sensitive, which leads to resource- constrained environments having slow CPUs and small memory footprints. At the same time, nodes have to be physically small which puts a limit to the physical size of the battery; and thus, the battery capacity. As a result, it is common for low-powersensor- stylesensor-style nodes to shut down radio and CPU resources for most of the time.Often, theThe radiousestends to use the same power for listening as fortransmitting.transmitting Section32 describes a few typical use cases for home automation applications. Section43 discusses the routing requirements for networks comprising such constrained devices in a home network environment. These requirements may be overlapping requirements derived from other application-specific routing requirements.3.A full list of requirements documents may be found in the end of the document. 2. Homeautomation applicationsAutomation Applications Home automation applications represent a special segment of networkedwirelessdevices with its unique set of requirements. Historically, such applications used wired networks or power line communication (PLC), but wireless solutions have emerged; allowing existing buildings to be upgraded more easily. To facilitate the requirements discussion in Section4,3, this section lists a few typical use cases of home automation applications. New applications are being developed at a high pace and this section does not mean to be exhaustive. Most home automation applications tend to be running some kind of command/response protocol. The command may come from several places.For instance a2.1. Lighting Application In Action A lamp may be turned on, not onlybeby a wall switch but alsofromby a movement sensor.3.1. Turning offThe wall switch module may itself be a push- button sensor and an actuator at thehousesame time. This will often be the case whenleavingupgrading existing buildings as existing wiring is not prepared for automation. One event may cause many actuators to be activated at the same time. Using the direct analogy to an electronic car key, a house owner may activate the "leaving home" function from an electronic house key, mobile phone, etc. For the sake of visual impression, all lights should turn off at the same time. At least, it should appear to happen at the same time. A well-known problem in wireless home automation is the "popcorn effect": Lamps are turned on one at a time, at a rate so slow that it is clearly visible. Some existing home automation solutions use a clever mix of a "subnet groupcast" message in direct range with no acknowledgementand no forwardingbefore sending acknowledged singlecast messages to eachlightingdevice. The controller forms thegroupsgroup and decides which nodes should receive"turn-off" or "turn-on" requests. 3.2.a message. 2.2. EnergyconservationConservation andoptimizing energy consumption Parts of the world usingOptimizing Energy Consumption In order to save energy, airconditioning may letconditioning, central heating, window shadesgo down and turn off the AC device when leaving home. Air conditioningetc. maystartbe controlled bytimertimers, motion sensors or remotely viamotion sensor when the owner returns home. The owner may even activate the air conditioning via cell phone before getting home. Geographical areas using centralinternet or cell. Central heating mayturn off heating when not at home and usealso be set to a reduced temperature during night time. The power grid may experience periods where more wind-generated power is produced than is needed. Typically this may happen during night hours.The washing machine and dish washer may just as well work while power is cheap. The electric car should also charge its batteries on cheap power.In periods where electricity demands exceed available supply, appliances such as air conditioning, climate control systems, washing machines etc. can be turned off to avoid overloading the power grid.Wireless remoteThis is known as Demand-Side Management (DSM). Remote control ofthehousehold appliances is well-suited for this application. The start/stop decision for the appliances can also be regulated by dynamic power pricing information obtained from the electricity utility companies.Moreover, inThis method called Demand-Response (DR) works by motivation of users via pricing, bonus points, etc. For example, the washing machine and dish washer may just as well work while power is cheap. The electric car should also charge its batteries on cheap power. In order to achieve effective electricity savings, the energy monitoring applicationrunning on the Wireless Sensor Network (WSN)must guarantee that the power consumption of the ROLL devices is much lower than that of the appliance itself. Most of theseapplicationsappliances are mains powered and are thus ideal for providing reliable, always-on routing resources. Battery-powered nodes, by comparison, are constrained routing resources and may only provide reliable routing under some circumstances.3.3.2.3. Moving aremote control aroundRemote Control Around A remote control is a typical example of a mobile device in a home automation network. An advanced remote control may be used for dimming the light in the dining room while eating and later on, turning up the music while doing the dishes in the kitchen. Reaction must appear to be instant (within a few hundred milliseconds) even when the remote control has moved to a new location. The remote control may be communicating to either a central home automation controller or directly to the lamps and the media center.3.4.2.4. Addinga new lamp module to the systemA New Module To The System Small-size, low-cost modules may have no user interface except for a single button. Thus, an automated inclusion process is needed for controllers to find new modules. Inclusion covers the detection of neighbors and assignment of a unique node ID. Inclusion should be completed within a few seconds.DistributionIf assignment of unique addresses isusuallyperformed by a centralcontroller. In this case,controller, it must be possible to route the inclusion request from the joining node to the central controllerevenbefore the joining nodeis assigned a unique address. 3.5.has been included in the network. 2.5. Controllingbattery operated window shadesBattery Operated Window Shades In consumer premises, window shades are often battery-powered as there is no access to mains power over the windows. For battery conservation purposes,the receiversuch an actuator node is sleeping most of the time. Ahome automationcontroller sending commands towindow shadesa sleeping actuator node via ROLL devices will have no problems delivering the packet to the nearest powered router, butthethat router mayhave to wait for someexperience a delay until the next wake-up time before the command can bedelivered to the window shades if the receiver is sleeping; e.g. up to 250ms. 3.6.delivered. 2.6. Remotevideo surveillanceVideo Surveillance Remote video surveillance is a fairly classic application for Home networking providing the ability for the end user to get a video stream from a Web Cam reached via theInternet, which canInternet. The video stream may be triggered by the end-userthat has receivedafter receiving an alarm from amovementsensor (movement or smokedetector -detector) or the user simply wants to check the home status via video. Note that in the former case, more than likely, there will be a form of inter-device communication:indeed, uponUpon detecting some movement in the home, the movement sensor may send a request to the light controller toturn-onturn on the lights, to the Web Cam to start a video stream that would then be directed to the enduser (cell phone, PDA)user's cell phone or Personal Digital Assistant (PDA) via the Internet.ByIn contrastwithto other applications, e.g. industrialsensorssensors, where data would mainly be originated by sensor to a sink and vice versa, this scenario implicates a direct inter-device communication between ROLL devices.3.7.2.7. Healthcare By adding communication capability to devices, patients and elderly citizens may be able to do simple measurements at home. Thanks to online devices, a doctor can keep an eye on the patient's health and receive warnings if a new trend is discovered by automated filters. Fine-grained daily measurements presented in proper ways may allow the doctor to establish a more precise diagnosis. Such applications may be realized as wearable products which frequently do a measurement and automatically deliver the result to a data sink locally or over the Internet. Applications falling in this category are referred to as at-home health reporting. Whether measurements are done in a fixed interval or if they are manually activated, they leave all processing to the receiving data sink. A more active category of applications may send an alarm if some alarm condition is triggered. This category of applications is referred to as at-home health monitoring. Measurements are interpreted in the device and may cause reporting of an event if an alarm is triggered. Many implementations may overlap both categories.3.7.1.2.7.1. At-homehealth reportingHealth Reporting Applications might include: o Temperature o Weight o Blood pressure o Insulin level Measurements may be stored for long term statistics. At the same time, a critically high blood pressure may cause the generation of an alarm report. Refer to3.7.2.2.7.2. To avoid a high number of request messages, nodes may be configured to autonomously do a measurement and send a report in intervals.3.7.2.2.7.2. At-homehealth monitoringHealth Monitoring An alarm event may become active e.g. if the measured blood pressure exceeds a threshold or if a person falls to the ground. Alarm conditions must be reported with the highest priority and timeliness. Applications might include: o Temperature o Weight o Blood pressure o Insulin level o Electrocardiogram (ECG) o Position tracker3.7.3. Healthcare routing considerations From a ROLL perspective, all the above-mentioned applications may run on battery. They may also be portable and therefore need to locate a new neighbor router on a frequent basis. Not being powered most of the time, the nodes should not be used as routing nodes. However, sleeping, battery-powered nodes may be involved in routing. Examples include cases where a person falls during a power blackout. In that case it may be that no mains-powered routers are available for forwarding the alarm message to a (battery- backed) internet gateway located out of direct range. Delivery of measurement data has a more relaxed requirement for route discovery time compared to a remote control. On the other hand, it is critical that a "person fell" alarm is actually delivered in the end. 3.8. Alarm systems A home security alarm system is comprised2.8. Alarm Systems A home security alarm system is comprised of variousdevices like vibration detectors,sensors (vibration, fire or carbonmonoxide detection system, door or window contacts, glass-break detector, presence sensor,monoxide, door/window, glass-break, presence, panic button,home security key.etc.). Some smoke alarms are battery powered and at the same time mounted in a high place. Battery-powered safety devices should only be used for routing if no other alternatives exist to avoid draining the battery. A smoke alarm with a drained battery does not provide a lot of safety. Also, it may be inconvenient to exchange battery in a smoke alarm. Alarm system applications may have both a synchronous and an asynchronous behavior; i.e. they may be periodically queried by a central control application (e.g. for a periodical refreshment of the network state), or send a message to the control application on their owninitiative basing upon the status of the environment they monitor.initiative. When a node (or a group of nodes) identifies a risk situation (e.g. intrusion, smoke, fire), it sends an alarm message tothe control centrea central controller that could autonomously forward it via Internet or interact withthe WSNother network nodes (e.g.tryingtry to obtain more detailed information orasking toask other nodes close to the alarm event).Alarm messages have, obviously, strict low-latency requirements.Finally, routing via battery-powered nodes may be veryslowly reactingslow if the nodes are sleeping most of the time (they could appear unresponsive to the alarm detection). To ensure fast message delivery and avoid battery drain, routing should be avoided viathis category ofsleeping devices.3.9. Battery-powered devices For convenience and low operational costs, power consumption of consumer products must be kept at a very low level to achieve a long battery lifetime. One implication of this fact is that RAM memory is limited and it may even be powered down; leaving only a few 100 bytes of RAM alive during the sleep phase. The use of battery powered devices reduces installation costs and does enable installation of devices even where main power lines are not available. On the other hand, in order to be cost effective and efficient, the devices have to maximize the sleep phase with a duty cycle lower than 10%. 4.3. UniquerequirementsRouting Requirements ofhome automation applicationsHome Automation Applications Home automation applications have a number of specific routing requirements related to the set of home networking applications and the perceived operation of the system.4.1.The relations of use cases to requirements are outlined in the table below: +------------------------------- +-----------------------------+ | Use case | Requirement | +------------------------------- +-----------------------------+ |2.1. Lighting Application In |3.1. Support of Groupcast | |Action |3.3. Support of Mobility | | |3.6. Scalability | +------------------------------- +-----------------------------+ |2.2. Energy Conservation and |3.2. Constraint-based Routing| |Optimizing Energy Consumption | | +------------------------------- +-----------------------------+ |2.3. Moving a Remote Control |3.3. Support of Mobility | |Around |3.7. Convergence Time | +------------------------------- +-----------------------------+ |2.4. Adding A New Module To The |3.7. Convergence Time | |System |3.8. Manageability | +------------------------------- +-----------------------------+ |2.5. Controlling Battery |3.4. Sleeping Nodes | |Operated Window Shades | | +------------------------------- +-----------------------------+ |2.7. Healthcare |3.2. Constraint-based Routing| | |3.3. Support of Mobility | | |3.5. Healthcare Routing | | |3.7. Convergence Time | +------------------------------- +-----------------------------+ |2.8. Alarm Systems |3.6. Scalability | | |3.7. Convergence Time | +------------------------------- +-----------------------------+ 3.1. Support of Groupcast +----------------------------------------------------------+ | Author's note: | | The support of groupcast only has implication on the | | addressing scheme and as such, it is outside the scope | | of this document that focuses on routing requirements. | | Nevertheless, it is an important parameter for the | | definition of the ROLL layer interface towards various | | layer two technologies for home control. | | | | Should a dedicated application-specific document be | | created for such details? | +----------------------------------------------------------+ Groupcast, in the context of home automation, is defined as the ability to simultaneously transmit a message to a group of recipients without prior interaction with the group members (i.e. group setup). A use-case for groupcast is given in Section3.1.2.1. Broadcast and groupcast in home automation MAY be used todeliver the illusion that all recipients respond simultaneously. Distant recipients outachieve simultaneous reaction from a group ofdirect range may not react to the (unacknowledged) groupcast. Acknowledged unicast delivery MUSTnodes. It SHOULD beused subsequently. The supportto possible to address a group ofunicast, groupcast and broadcast also has an implication onreceivers known by theaddressing scheme and are outsidesender even if thescope of this documentreceivers do not know thatfocuses onthey have been grouped by therouting requirements aspects. It MUSTsender. 3.2. Constraint-based Routing For convenience and low operational costs, power consumption of consumer products must be kept at a very low level topossible to addressachieve a long battery lifetime. One implication of this fact is that Random Access Memory (RAM) is limited and it may even be powered down; leaving only agroupfew 100 bytes ofreceivers known byRAM alive during thesendersleep phase. The use of battery powered devices reduces installation costs and does enable installation of devices evenif the receivers dowhere main power lines are notknow that theyavailable. On the other hand, in order to be cost effective and efficient, the devices havebeen grouped byto maximize thesender. 4.2. Constraint-based Routingsleep phase with a duty cycle lower than 1%. Some devices only wake up in response to an event, e.g. a push button. Simple battery-powered nodes such as movement sensors on garage doors and rainmeterssensors may not be able to assist in routing. Depending on the node type, the node never listens at all, listens rarely or makes contact on demand to a pre-configured target node. Attempting to communicate to such nodes may at best require long time before getting a response. Other battery-powered nodes may have the capability to participate in routing. The routing protocolshould either share the load between nodes to preserve battery or onlySHOULD route via mains-powered nodes if possible. Themost reliable routing resource may be a battery-backed, mains-powered smoke alarm. Therouting protocol MUST support constraint-based routing taking into account node properties (CPU, memory, level of energy, sleep intervals, safety/convenience of changing battery).4.3.3.3. Support of Mobility In a home environment, although the majority of devices are fixed devices, there is still a variety of mobile devices: for example a multi-purpose remote control is likely to move. Another example of mobile devices is wearable healthcare devices. While healthcare devices delivering measurement results can tolerate route discovery times measured in seconds, a remote control appears unresponsive if using more than 0.5 seconds to e.g. pause the music. While, in theory, all battery-powered devices and mains-poweredplug- inplug-in modules may be moved, the predominant case is that the sending node has moved while the rest of the network has not changed. The routing protocol MUST provide mobility with convergence time below 0.5 second if only the sender has moved. A non-responsive node can either be caused by 1) a failure in the node, 2) a failed link on the path to the node or 3) a moved node. In the first two cases, the node can be expected to reappear at roughly the same location in the network, whereas it can return anywhere in the network in the latter case. 3.4. Sleeping Nodes Sleeping nodes may appear to be non-responsive. Thesearch strategy in therouting protocolwill behave differently dependingMUST take into account the delivery time to a sleeping target node. The wake-up interval of a sleeping node MUST be less than one second. 3.5. Healthcare Routing Because most health care applications may run on battery, thisexpectation. Theleads to specific requirements for the routingprotocol SHOULD make useprotocol. Most health care applications may also be portable and therefore need to locate a new neighbor router on a frequent basis. Not being powered most of thefact that iftime, the nodes should notbeing ablebe used as routing nodes. However, battery-powered nodes may be involved in routing. Examples include cases where a person falls during a power blackout. In that case it may be that no mains-powered routers are available for forwarding the alarm message to a (battery-backed) internet gateway located out of direct range. Delivery of measurement data has a more relaxed requirement for route discovery time compared todeliverapacket,remote control. On the other hand, it ismost likely that the sending node moved; rather than a failure occurred incritical thatnode or inalink on the path towards it. 4.4. Support of Periodical Scanning The routing protocol MUST support the recognition of neighbors and periodical scanning. This process SHOULD preserve energy capacity as much as possible. (Derived from use case 3.8. Alarm Systems) 4.5."person fell" alarm is actually delivered. 3.6. Scalability Looking at the number of wall switches, power outlets, sensors of various nature, video equipment and so on in a modern house, it seems quite realistic that hundreds of low power devices may form a home automation network in a fully populated "smart" home. Moving towards professional building automation, the number of such devices may be in the order of several thousands.Thus, theThe routing protocol MUST support 250 devices ina subnet. The routing protocol SHOULD support 2500 devices in a subnet. 4.6.the network. 3.7. Convergence Time A wireless home automationPersonal Area Network (PAN)network is subject to variousinstabilityinstabilities due to signal strength variation, moving persons and the like. Furthermore, as the number of devices increases, the probability of a node failure also increases. Measured from the transmission of a packet, the following convergence time requirements apply. The routing protocol MUST converge within 0.5 second if no nodes have moved. The routing protocol MUST converge within 2 seconds if the destination node of the packet has moved.4.7.In both cases, "converge" means "the originator node has received a response from the destination node". 3.8. Manageability The ability of the home network to support auto-configuration is of the utmost importance. Indeed, most end users will not have the expertise and the skills to perform advanced configuration and troubleshooting. Thus the routing protocol designed for homePANautomation networks MUST provide a set of features includingzero-configurationzero- configuration of the routing protocol for a new node to be added to the network. FromROLLa routing perspective, zero-configuration means that a node can obtain an address and join the network on its own, without human intervention. 3.9. Stability The routing protocol MUST support the ability to isolate a misbehaving node thus preserving the correct operation of the overall network.5.4. Traffic Pattern Depending on the design philosophy of the home network, wall switches may be configured to directly control individual lamps or alternatively, all wall switches send control commands to a central lighting control computer which again sends out control commands to relevant devices. In a distributed system, the traffic tends to beany-to-many.multipoint-to- multipoint. In a centralized system, it is a mix ofany-to-onemultipoint-to- point andone-to-many.point-to-multipoint. Wall switches only generate traffic when activated, which typically happens from a one to tens of times per hour. Remote controls have a similar transmit pattern to wall switches, but are activated more frequently. Temperature/air pressure/rain sensors send frames when queried by the user or can be preconfigured to send measurements at fixed intervals (typically minutes). Motion sensors typically send a frame when motion is first detected and another frame when an idle period with no movement has elapsed. The highest transmission frequency depends on the idle period used in the sensor. Sometimes, a timer will trigger a frame transmission when an extended period without status change has elapsed. All frames sent in the above examples are quite short, typically less than 5 bytes of payload. Lost frames and interference from other transmitters may lead to retransmissions. In all cases, acknowledgment frames with a size of a few bytes are used.6.5. OpenissuesIssues Other items to be addressed in further revisions of this document include: o Load Balancing (Symmetrical and Asymmetrical) o Groupcast definition in a separate document? (TBD) o Use case: Home Control Installer Scenario o Security7.6. Security ConsiderationsEncryption can be employed to provide confidentiality, integrity and authentication of the messages carried on the wireless links. Adding these capabilities to theImplementing security mechanisms in ROLL network deviceswillmay degrade energy efficiency and increasecost, so a trade-off must be made for each specific application. Door locks, alarm sensors and medication dosage equipment are examples where strong encryption and authentication are needed.cost. Thecommand to unlock a door must be authenticated, as must the communication between an alarm sensor and the central alarm controller. Furthermore, traffic analysis of the alarm system communication must not reveal if the alarm is activated. Light dimmers, window shades, motion sensors, weight sensors etc. may not need encryption.routing protocol chosen for ROLL MUST allow for low-power, low-cost network devices with limited security needs. Protection against unintentional inclusion in neighboring networksmustMUST be provided.Providing confidentiality, integrity and authentication against malicious opponents is optional. 8.7. IANA Considerations This document includes no request to IANA.9.8. Acknowledgments J. P. Vasseur, Jonathan Hui, Eunsook "Eunah" Kim, Mischa Dohler and Massimo Maggiorotti are gratefully acknowledged for their contributions to this document. This document was prepared using 2-Word-v2.0.template.dot.10.9. References10.1.As an exception, this internet draft contains references to other internet drafts. The reason is that the referenced internet drafts are developed in parallel to this document. When promoted to an RFC, the references MUST be updated to RFCs as well or removed from the references section. 9.1. Normative References [RFC2119] Bradner, S., "Key words for use in RFCs to Indicate Requirement Levels", BCP 14, RFC 2119, March 1997.10.2.draft-ietf-roll-indus-routing-reqs-01.txt draft-ietf-roll-urban-routing-reqs-01.txt draft-martocci-roll-commercial-routing-reqs-00.txt draft-ietf-roll-protocols-survey-00.txt 9.2. Informative References Author's Addresses Anders Brandt Zensys, Inc. Emdrupvej 26 Copenhagen, DK-2100 Denmark Email: abr@zen-sys.com Jakob Buron Zensys, Inc. Emdrupvej 26 Copenhagen, DK-2100 Denmark Email: jbu@zen-sys.com Giorgio Porcu Telecom Italia Piazza degli Affari, 2 20123 Milan Italy Email: giorgio.porcu@guest.telecomitalia.it Intellectual Property Statement The IETF takes no position regarding the validity or scope of any Intellectual Property Rights or other rights that might be claimed to pertain to the implementation or use of the technology described in this document or the extent to which any license under such rights might or might not be available; nor does it represent that it has made any independent effort to identify any such rights. Information on the procedures with respect to rights in RFC documents can be found in BCP 78 and BCP 79. Copies of IPR disclosures made to the IETF Secretariat and any assurances of licenses to be made available, or the result of an attempt made to obtain a general license or permission for the use of such proprietary rights by implementers or users of this specification can be obtained from the IETF on-line IPR repository at http://www.ietf.org/ipr. The IETF invites any interested party to bring to its attention any copyrights, patents or patent applications, or other proprietary rights that may cover technology that may be required to implement this standard. Please address the information to the IETF at ietf-ipr@ietf.org. Disclaimer of Validity This document and the information contained herein are provided on an "AS IS" basis and THE CONTRIBUTOR, THE ORGANIZATION HE/SHE REPRESENTS OR IS SPONSORED BY (IF ANY), THE INTERNET SOCIETY, THE IETF TRUST AND THE INTERNET ENGINEERING TASK FORCE DISCLAIM ALL WARRANTIES, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO ANY WARRANTY THAT THE USE OF THE INFORMATION HEREIN WILL NOT INFRINGE ANY RIGHTS OR ANY IMPLIED WARRANTIES OF MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Copyright Statement Copyright (C) The IETF Trust (2008). This document is subject to the rights, licenses and restrictions contained in BCP 78, and except as set forth therein, the authors retain all their rights. Acknowledgment Funding for the RFC Editor function is currently provided by the Internet Society.