Network Working Group                                             X. Liu
Internet-Draft                                                     Jabil
Intended status: Standards Track                                   Y. Qu
Expires: September 4, November 11, 2017                  Futurewei Technologies, Inc.
                                                               A. Lindem
                                                           Cisco Systems
                                                                C. Hopps
                                                        Deutsche Telekom
                                                               L. Berger
                                                 LabN Consulting, L.L.C.
                                                           March 3,
                                                            May 10, 2017

                  Routing Area Common YANG Data Types
                   draft-ietf-rtgwg-routing-types-02
                   draft-ietf-rtgwg-routing-types-03

Abstract

   This document defines a collection of common data types using the
   YANG data modeling language.  These derived common types are designed
   to be imported by other modules defined in the routing area.

Status of This Memo

   This Internet-Draft is submitted in full conformance with the
   provisions of BCP 78 and BCP 79.

   Internet-Drafts are working documents of the Internet Engineering
   Task Force (IETF).  Note that other groups may also distribute
   working documents as Internet-Drafts.  The list of current Internet-
   Drafts is at http://datatracker.ietf.org/drafts/current/.

   Internet-Drafts are draft documents valid for a maximum of six months
   and may be updated, replaced, or obsoleted by other documents at any
   time.  It is inappropriate to use Internet-Drafts as reference
   material or to cite them other than as "work in progress."

   This Internet-Draft will expire on September 4, November 11, 2017.

Copyright Notice

   Copyright (c) 2017 IETF Trust and the persons identified as the
   document authors.  All rights reserved.

   This document is subject to BCP 78 and the IETF Trust's Legal
   Provisions Relating to IETF Documents
   (http://trustee.ietf.org/license-info) in effect on the date of
   publication of this document.  Please review these documents
   carefully, as they describe your rights and restrictions with respect
   to this document.  Code Components extracted from this document must
   include Simplified BSD License text as described in Section 4.e of
   the Trust Legal Provisions and are provided without warranty as
   described in the Simplified BSD License.

Table of Contents

   1.  Introduction  . . . . . . . . . . . . . . . . . . . . . . . .   2
     1.1.  Requirements Language . . . . . . . . . . . . . . . . . .   2
     1.2.  Terminology . . . . . . . . . . . . . . . . . . . . . . .   2
   2.  Overview  . . . . . . . . . . . . . . . . . . . . . . . . . .   3
   3.  IETF Routing Types YANG Module  . . . . . . . . . . . . . . .   6
   4.  IANA Routing Types YANG Module  . . . . . . . . . . .   5
   4. . . . .  18
   5.  IANA Considerations . . . . . . . . . . . . . . . . . . . . .  20
   5.  28
   6.  Security Considerations . . . . . . . . . . . . . . . . . . .  21
   6.  28
   7.  Acknowledgements  . . . . . . . . . . . . . . . . . . . . . .  21
   7.  29
   8.  References  . . . . . . . . . . . . . . . . . . . . . . . . .  21
     7.1.  29
     8.1.  Normative References  . . . . . . . . . . . . . . . . . .  21
     7.2.  29
     8.2.  Informative References  . . . . . . . . . . . . . . . . .  22
     7.3.  29
     8.3.  URIs  . . . . . . . . . . . . . . . . . . . . . . . . . .  23  31
   Authors' Addresses  . . . . . . . . . . . . . . . . . . . . . . .  24  31

1.  Introduction

   The YANG [RFC6020] [RFC7950] is a data modeling language used to
   model configuration data, state data, Remote Procedure Calls, and
   notifications for network management protocols.  The YANG language
   supports a small set of built-in data types and provides mechanisms
   to derive other types from the built-in types.

   This document introduces a collection of common data types derived
   from the built-in YANG data types.  The derived types are designed to
   be the common types applicable for modeling in the routing area.

1.1.  Requirements Language

   The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",
   "SHOULD", "SHOULD NOT", "RECOMMENDED", "MAY" and "OPTIONAL" in this
   document are to be interpreted as described in BCP 14, RFC 2119
   [RFC2119].

1.2.  Terminology

   The terminology for describing YANG data models is found in
   [RFC7950].

2.  Overview

   This document defines the following data types: two models for common routing types, ietf-
   routing-types and iana-routing-types.  The only module imports are
   from [RFC6021].  The ietf-routing-types model contains common routing
   types other than those corresponding directly to IANA mappings.
   These include:

   router-id
      Router Identifiers are commonly used to identify a nodes in
      routing and other control plane protocols.  An example usage of
      router-id can be found in [I-D.ietf-ospf-yang].

   address-family
      This type defines values for use in address family identifiers.
      The values are based on the IANA Address Family Numbers Registry
      [1].  An example usage can be found in [I-D.ietf-idr-bgp-model].

   route-target
      Route Targets (RTs) are commonly used to control the distribution
      of virtual routing and forwarding (VRF) information, see
      [RFC4364], in support of virtual private networks (VPNs).  An
      example usage can be found in [I-D.ietf-bess-l2vpn-yang].

   route-target-type
      This type defines the import and export rules of Route Targets, as
      descibed in Section 4.3.1 of [RFC4364].  An example usage can be
      found in [I-D.ietf-idr-bgp-model].

   route-distinguisher
      Route Distinguishers (RDs) are commonly used to identify separate
      routes in support of virtual private networks (VPNs).  For
      example, in [RFC4364], RDs are commonly used to identify
      independent VPNs and VRFs, and more generally, to identify
      multiple routes to the same prefix.  An example usage can be found
      in [I-D.ietf-idr-bgp-model].

   ipv4-multicast-group-address
      This type defines the representation of an IPv4 multicast group
      address, which is in the range from 224.0.0.0 to 239.255.255.255.
      An example usage can be found in [I-D.ietf-pim-yang].

   ipv6-multicast-group-address
      This type defines the representation of an IPv6 multicast group
      address, which is in the range of FF00::/8.  An example usage can
      be found in [I-D.ietf-pim-yang].

   ip-multicast-group-address
      This type represents an IP multicast group address and is IP
      version neutral.  The format of the textual representation implies
      the IP version.  An example usage can be found in
      [I-D.ietf-pim-yang].

   ipv4-multicast-source-address
      IPv4 source address type for use in multicast control protocols.
      This type also allows the indication of wildcard sources, i.e.,
      "*".  An example of where this type may/will be used is
      [I-D.ietf-pim-yang].

   ipv6-multicast-source-address
      IPv6 source address type for use in multicast control protocols.
      This type also allows the indication of wildcard sources, i.e.,
      "*".  An example of where this type may/will be used is
      [I-D.ietf-pim-yang].

   bandwidth-ieee-float32
      Bandwidth in IEEE 754 floating point 32-bit binary format
      [IEEE754].  Commonly used in Traffic Engineering control plane
      protocols.  An example of where this type may/will be used is
      [I-D.ietf-ospf-yang].

   link-access-type
      This type identifies the IGP link type.  An example of where this
      type may/will be used is [I-D.ietf-ospf-yang].

   timer-multiplier
      This type is used in conjunction with a timer-value type.  It is
      generally used to indicate define the number of timer-value
      intervals that may expire before a specific event must occur.
      Examples of this include the arrival of any BFD packets, see
      [RFC5880] Section 6.8.4, or hello_interval in [RFC3209].  Example
      of where this type may/will be used is [I-D.ietf-idr-bgp-model]
      and [I-D.ietf-teas-yang-rsvp].

   timer-value-seconds16
      This type covers timers which can be set in seconds, not set, or
      set to infinity.  This type supports a range of values that can be
      represented in a uint16 (2 octets).  An example of where this type
      may/will be used is [I-D.ietf-ospf-yang].

   timer-value-seconds32
      This type covers timers which can be set in seconds, not set, or
      set to infinity.  This type supports a range of values that can be
      represented in a uint32 (4 octets).  An example of where this type
      may/will be used is [I-D.ietf-teas-yang-rsvp].

   timer-value-milliseconds
      This type covers timers which can be set in milliseconds, not set,
      or set to infinity.  This type supports a range of values that can
      be represented in a uint32 (4 octets).  Examples of where this
      type may/will be used include [I-D.ietf-teas-yang-rsvp] and
      [I-D.ietf-bfd-yang].

   percentage
      This type defines a percentage with a range of 0-100%.  An example
      usage can be found in [I-D.ietf-idr-bgp-model].

   timeticks64
      This type is based on the timeticks type defined in [RFC6991] but
      with 64-bit precision.  It represents the time in hundredths of a
      second between two epochs.  An example usage can be found in
      [I-D.ietf-idr-bgp-model].

   generalized-label
      This type represents a generalized label for Generalized Multi-
      Protocol Label Switching (GMPLS) [RFC3471].  The Generalized Label
      does not identify its type, which is known from the context.  An
      example usage can be found in [I-D.ietf-teas-yang-te].

   mpls-label-special-purpose
      This type represents the special-purpose Multiprotocol Label
      Switching (MPLS) label values [RFC7274].  An example usage can be
      found in [I-D.ietf-mpls-base-yang].

   mpls-label-general-use
      The 20 bits label values in an MPLS label stack entry, specified
      in [RFC3032].  This label value does not include the encodings of
      Traffic Class and TTL (time to live).  The label range specified
      by this type is for general use, with special-purpose MPLS label
      values excluded.  An example usage can be found in
      [I-D.ietf-mpls-base-yang].

   mpls-label
      The 20 bits label values in an MPLS label stack entry, specified
      in [RFC3032].  This label value does not include the encodings of
      Traffic Class and TTL (time to live).  The label range specified
      by this type covers the general use values and the special-purpose
      label values.  An example usage can be found in
      [I-D.ietf-mpls-base-yang].

   This document defines the following YANG groupings:

   mpls-label-stack
      This grouping defines a reusable collection of schema nodes
      representing an MPLS label stack [RFC3032].  An example usage can
      be found in [I-D.ietf-mpls-base-yang].

   vpn-route-targets
      This grouping defines a reusable collection of schema nodes
      representing Route Target import-export rules used in the BGP
      enabled Virtual Private Networks (VPNs).  [RFC4364][RFC4664].  An
      example usage can be found in [I-D.ietf-bess-l2vpn-yang].

   The iana-routing-types model contains common routing types
   corresponding directly to IANA mappings.  These include:

   address-family
      This type defines values for use in address family identifiers.
      The values are based on the IANA Address Family Numbers Registry
      [2].  An example usage can be found in [I-D.ietf-idr-bgp-model].

   subsequent-address-family
      This type defines values for use in subsequent address family
      (SAFI) identifiers.  The values are based on the IANA Subsequent
      Address Family Identifiers Registry [3].

3.  IETF Routing Types YANG Module

   <CODE BEGINS> file "ietf-routing-types@2017-02-27.yang" "ietf-routing-types@2017-05-10.yang"
   module ietf-routing-types {

     namespace "urn:ietf:params:xml:ns:yang:ietf-routing-types";
     prefix "rt-types";

     import ietf-yang-types {
       prefix "yang";
     }

     import ietf-inet-types {
       prefix "inet";
     }

     organization "IETF Routing Area Working Group (rtgwg)";

     contact
         "Routing Area Working Group - <rtgwg@ietf.org>";

     description
       "This module contains a collection of YANG data types
        considered generally useful for routing protocols."; protocols.

        Copyright (c) 2017 IETF Trust and the persons identified as
        authors of the code.  All rights reserved.

        Redistribution and use in source and binary forms, with or
        without modification, is permitted pursuant to, and subject to
        the license terms contained in, the Simplified BSD License set
        forth in Section 4.c of the IETF Trust's Legal Provisions
        Relating to IETF Documents
        (http://trustee.ietf.org/license-info).

        The key words 'MUST', 'MUST NOT', 'REQUIRED', 'SHALL', 'SHALL
        NOT', 'SHOULD', 'SHOULD NOT', 'RECOMMENDED', 'MAY', and
        'OPTIONAL' in the module text are to be interpreted as described
        in RFC 2119.

        This version of this YANG module is part of RFC XXXX;
        see the RFC itself for full legal notices.";

     revision 2017-02-27 2017-05-10 {
       description
         "Initial revision.";
       reference
         "RFC TBD: Routing YANG Data Types";
     }

     /*** collection of types related to routing ***/
     typedef router-id {
       type yang:dotted-quad;
       description
         "A 32-bit number in the dotted quad format assigned to each
          router. This number uniquely identifies the router within an
          Autonomous System.";
     }

     // address-family
     identity address-family

     /*** collection of types related to VPN ***/
     typedef route-target {
       description
         "Base identity from which identities describing address
          families are derived.";
     }

     identity ipv4
       type string {
       base address-family;
       description
         "This identity represents IPv4 address family.";
         pattern
           '(0:(6553[0-5]|655[0-2]\d|65[0-4]\d{2}|6[0-4]\d{3}|'
         + '[0-5]?\d{0,3}\d):(429496729[0-5]|42949672[0-8]\d|'
         + '4294967[01]\d{2}|429496[0-6]\d{3}|42949[0-5]\d{4}|'
         + '4294[0-8]\d{5}|429[0-3]\d{6}|42[0-8]\d{7}|4[01]\d{8}|'
         + '[0-3]?\d{0,8}\d))|'
         + '(1:(((\d|[1-9]\d|1\d{2}|2[0-4]\d|25[0-5])\.){3}(\d|[1-9]\d|'
         + '1\d{2}|2[0-4]\d|25[0-5])):(6553[0-5]|655[0-2]\d|'
         + '65[0-4]\d{2}|6[0-4]\d{3}|[0-5]?\d{0,3}\d))|'
         + '(2:(429496729[0-5]|42949672[0-8]\d|4294967[01]\d{2}|'
         + '429496[0-6]\d{3}|42949[0-5]\d{4}|4294[0-8]\d{5}|'
         + '429[0-3]\d{6}|42[0-8]\d{7}|4[01]\d{8}|[0-3]?\d{0,8}\d):'
         + '(6553[0-5]|655[0-2]\d|65[0-4]\d{2}|6[0-4]\d{3}|'
         + '[0-5]?\d{0,3}\d))';
       }
     identity ipv6 {
       base address-family;
       description
         "This identity represents IPv6 address family.";
     }

     //The rest
         "A route target is an 8-octet BGP extended community
          initially identifying a set of sites in a BGP
          VPN (RFC 4364). However, it has since taken on a more
          general role in BGP route filtering.
          A route target consists of three fields:
          a 2-octet type field, an administrator field,
          and an assigned number field.
          According to the values deinfed data formats for type 0, 1, and 2 defined in
          RFC4360 and RFC5668, the IANA registry

     identity nsap {
       base address-family;
       description
         "Address family from IANA registry."; encoding pattern is defined as:

          0:2-octet-asn:4-octet-number
          1:4-octet-ipv4addr:2-octet-number
          2:4-octet-asn:2-octet-number.

          Some valid examples are: 0:100:100, 1:1.1.1.1:100, and
          2:1234567890:203.";
       reference
         "RFC4360: BGP Extended Communities Attribute.
          RFC5668: 4-Octet AS Specific BGP Extended Community.";
     }
     identity hdlc

     typedef route-target-type {
       base address-family;
       description
         "(8-bit multidrop)
           Address family from IANA registry.";
     }
     identity bbn1822
       type enumeration {
       base address-family;
       description
         "AHIP (BBN report #1822)
          Address family from IANA registry.";
     }
     identity ieee802
         enum "import" {
       base address-family;
           value "0";
           description
         "(includes all 802 media plus Ethernet canonical format)
          Address family from IANA registry.";
             "The route target applies to route import.";
          }
     identity e163
         enum "export" {
       base address-family;
           value "1";
           description
         "Address family from IANA registry.";
             "The route target applies to route export.";
          }
     identity e164
         enum "both" {
       base address-family;
           value "2";
           description
         "SMDS, Frame Relay, ATM
          Address family from IANA registry.";
             "The route target applies to both route import and
              route export.";
          }
       }
     identity f69 {
       base address-family;
       description
         "(Telex)
          Address family from IANA registry.";
         "Indicates the role a route target takes
          in route filtering.";
       reference
         "RFC4364: BGP/MPLS IP Virtual Private Networks (VPNs).";
     }
     identity x121

     typedef route-distinguisher {
       base address-family;
       description
         "(X.25, Frame Relay)
          Address family from IANA registry.";
     }
     identity ipx
       type string {
       base address-family;
       description
         "Address family from IANA registry.";
         pattern
           '(0:(6553[0-5]|655[0-2]\d|65[0-4]\d{2}|6[0-4]\d{3}|'
         + '[0-5]?\d{0,3}\d):(429496729[0-5]|42949672[0-8]\d|'
         + '4294967[01]\d{2}|429496[0-6]\d{3}|42949[0-5]\d{4}|'
         + '4294[0-8]\d{5}|429[0-3]\d{6}|42[0-8]\d{7}|4[01]\d{8}|'
         + '[0-3]?\d{0,8}\d))|'
         + '(1:(((\d|[1-9]\d|1\d{2}|2[0-4]\d|25[0-5])\.){3}(\d|[1-9]\d|'
         + '1\d{2}|2[0-4]\d|25[0-5])):(6553[0-5]|655[0-2]\d|'
         + '65[0-4]\d{2}|6[0-4]\d{3}|[0-5]?\d{0,3}\d))|'
         + '(2:(429496729[0-5]|42949672[0-8]\d|4294967[01]\d{2}|'
         + '429496[0-6]\d{3}|42949[0-5]\d{4}|4294[0-8]\d{5}|'
         + '429[0-3]\d{6}|42[0-8]\d{7}|4[01]\d{8}|[0-3]?\d{0,8}\d):'
         + '(6553[0-5]|655[0-2]\d|65[0-4]\d{2}|6[0-4]\d{3}|'
         + '[0-5]?\d{0,3}\d))|'
         + '(([3-9a-fA-F]|[1-9a-fA-F][\da-fA-F]{1,3}):'
         + '[\da-fA-F]{1,12})';
       }
     identity appletalk {
       base address-family;
       description
         "Address family
         "A route distinguisher is an 8-octet value used to distinguish
          routes from IANA registry."; different BGP VPNs (RFC 4364). A route
          distinguisher consists of three fields: A 2-octet type field,
          an administrator field, and an assigned number field.
          According to the data formats for type 0, 1, and 2 defined in
          RFC4364, the encoding pattern is defined as:

          0:2-octet-asn:4-octet-number
          1:4-octet-ipv4addr:2-octet-number
          2:4-octet-asn:2-octet-number.
          2-octet-other-hex-number:6-octet-hex-number

          Some valid examples are: 0:100:100, 1:1.1.1.1:100, and
          2:1234567890:203.";
       reference
         "RFC4364: BGP/MPLS IP Virtual Private Networks (VPNs).";
     }
     identity decnet-iv

     /*** collection of types common to multicast ***/
     typedef ipv4-multicast-group-address {
       base address-family;
       description
         "Decnet IV
          Address family from IANA registry.";
     }
     identity vines
       type inet:ipv4-address {
       base address-family;
       description
         "Banyan Vines
          Address family from IANA registry.";
         pattern '(2((2[4-9])|(3[0-9]))\.).*';
       }
     identity e164-nsap {
       base address-family;
       description
         "E.164 with NSAP format subaddress
          Address family
         "This type represents an IPv4 multicast group address,
          which is in the range from IANA registry."; 224.0.0.0 to 239.255.255.255.";
       reference
         "RFC1112: Host Extensions for IP Multicasting.";
     }
     identity dns

     typedef ipv6-multicast-group-address {
       base address-family;
       description
         "Domain Name System
          Address family from IANA registry.";
     }
     identity dn
       type inet:ipv6-address {
       base address-family;
       description
         "Distinguished Name
          Address family from IANA registry.";
         pattern
           '(([fF]{2}[0-9a-fA-F]{2}):).*';
       }
     identity as-num {
       base address-family;
       description
         "AS Number
         "This type represents an IPv6 multicast group address,
          which is in the range of FF00::/8.";
       reference
         "RFC4291: IP Version 6 Addressing Architecture. Sec 2.7.
          RFC7346: IPv6 Multicast Address family from IANA registry."; Scopes.";
     }
     identity xtp-v4

     typedef ip-multicast-group-address {
       base address-family;
       description
         "XTP over IPv4
          Address family from IANA registry.";
     }
     identity xtp-v6
       type union {
       base address-family;
       description
         "XTP over IPv6
          Address family from IANA registry.";
         type ipv4-multicast-group-address;
         type ipv6-multicast-group-address;
       }
     identity xtp {
       base address-family;
       description
         "XTP native mode XTP
          Address family from IANA registry.";
        "This type represents a version-neutral IP multicast group
         address. The format of the textual representation implies
         the IP version.";
     }
     identity fc-port

     typedef ipv4-multicast-source-address {
       base address-family;
       description
         "Fibre Channel World-Wide Port Name
          Address family from IANA registry.";
     }
     identity fc-node
       type union {
       base address-family;
       description
         "Fibre Channel World-Wide Node Name
          Address family from IANA registry.";
     }
     identity gwid
         type enumeration {
       base address-family;
       description
         "Address family from IANA registry.";
     }
     identity l2vpn
           enum '*' {
       base address-family;
             description
         "Address family from IANA registry.";
             "Any source address.";
           }
     identity mpls-tp-section-eid {
       base address-family;
       description
         "MPLS-TP Section Endpoint Identifier
          Address family from IANA registry.";
         }
     identity mpls-tp-lsp-eid {
       base address-family;
       description
         "MPLS-TP LSP Endpoint Identifier
          Address family from IANA registry.";
         type inet:ipv4-address;
       }
     identity mpls-tp-pwe-eid {
       base address-family;
       description
         "MPLS-TP Pseudowire Endpoint Identifier
          Address family from IANA registry.";
         "Multicast source IPv4 address type.";
     }
     identity mt-v4

     typedef ipv6-multicast-source-address {
       type union {
         type enumeration {
           enum '*' {
       base address-family;
             description
         "Multi-Topology IPv4.
          Address family from IANA registry.";
             "Any source address.";
           }
         }
         type inet:ipv6-address;
       }
     identity mt-v6 {
       base address-family;
       description
         "Multi-Topology IPv6.
          Address family from IANA registry.";
         "Multicast source IPv6 address type.";
     }

     /*** collection of types related common to VPN protocols ***/
     typedef route-target bandwidth-ieee-float32 {
       type string {
         pattern
           '(0:(6553[0-5]|655[0-2]\d|65[0-4]\d{2}|6[0-4]\d{3}|'
         + '[0-5]?\d{0,3}\d):(429496729[0-5]|42949672[0-8]\d|'
         + '4294967[01]\d{2}|429496[0-6]\d{3}|42949[0-5]\d{4}|'
           '0[xX](0((\.0?)?[pP](\+)?0?|(\.0?))|'
         + '4294[0-8]\d{5}|429[0-3]\d{6}|42[0-8]\d{7}|4[01]\d{8}|' '1(\.([\da-fA-F]{0,5}[02468aAcCeE]?)?)?[pP](\+)?(12[0-7]|'
         + '[0-3]?\d{0,8}\d))|'
         + '(1:(((\d|[1-9]\d|1\d{2}|2[0-4]\d|25[0-5])\.){3}(\d|[1-9]\d|'
         + '1\d{2}|2[0-4]\d|25[0-5])):(6553[0-5]|655[0-2]\d|'
         + '65[0-4]\d{2}|6[0-4]\d{3}|[0-5]?\d{0,3}\d))|'
         + '(2:(429496729[0-5]|42949672[0-8]\d|4294967[01]\d{2}|'
         + '429496[0-6]\d{3}|42949[0-5]\d{4}|4294[0-8]\d{5}|'
         + '429[0-3]\d{6}|42[0-8]\d{7}|4[01]\d{8}|[0-3]?\d{0,8}\d):'
         + '(6553[0-5]|655[0-2]\d|65[0-4]\d{2}|6[0-4]\d{3}|'
         + '[0-5]?\d{0,3}\d))'; '1[01]\d|0?\d?\d)?)';
       }
       description
         "A route target is an 8-octet BGP extended community
          initially identifying a set of sites
         "Bandwidth in a BGP
          VPN (RFC 4364). However, it has since taken on a more
          general role IEEE 754 floating point 32-bit binary format:
          (-1)**(S) * 2**(Exponent-127) * (1 + Fraction),
          where Exponent uses 8 bits, and Fraction uses 23 bits.
          The units are octets per second.
          The encoding format is the external hexadecimal-significant
          character sequences specified in BGP route filtering.
          A route target consists of three fields:
          a 2-octet type field, an administrator field, IEEE 754 and an assigned number field.
          According C99. The
          format is restricted to be normalized, non-negative, and
          non-fraction: 0x1.hhhhhhp{+}d or 0X1.HHHHHHP{+}D
          where 'h' and 'H' are hexadecimal digits, 'd' and 'D' are
          integers in the data formats range of [0..127].
          When six hexadecimal digits are used for type 0, 1, 'hhhhhh' or 'HHHHHH',
          the least significant digit must be an even number.
          'x' and 2 defined in
          RFC4360 'X' indicate hexadecimal; 'p' and RFC5668, the encoding pattern is defined as:

          0:2-octet-asn:4-octet-number
          1:4-octet-ipv4addr:2-octet-number
          2:4-octet-asn:2-octet-number. 'P' indicate power
          of two. Some valid examples are: 0:100:100, 1:1.1.1.1:100, 0x0p0, 0x1p10, and
          2:1234567890:203.";
          0x1.abcde2p+20";
       reference
         "RFC4360: BGP Extended Communities Attribute.
          RFC5668: 4-Octet AS Specific BGP Extended Community.";
         "IEEE Std 754-2008: IEEE Standard for Floating-Point
          Arithmetic.";
     }

     typedef route-target-type link-access-type {
       type enumeration {
         enum "import" "broadcast" {
           value "0";
           description
             "The route target applies to route import.";
           "Specify broadcast multi-access network.";
         }
         enum "export" "non-broadcast-multiaccess" {
           value "1";
           description
             "The route target applies to route export.";
           "Specify Non-Broadcast Multi-Access (NBMA) network.";
         }
         enum "both" "point-to-multipoint" {
           value "2";
           description
             "The route target applies to both route import and
              route export.";
           "Specify point-to-multipoint network.";
         }
         enum "point-to-point" {
           description
           "Specify point-to-point network.";
         }
       }
       description
         "Indicates the role a route target takes
          in route filtering.";
       reference
         "RFC4364: BGP/MPLS IP Virtual Private Networks (VPNs).";
         "Link access type.";
     }

     typedef route-distinguisher timer-multiplier {
       type string {
         pattern
           '(0:(6553[0-5]|655[0-2]\d|65[0-4]\d{2}|6[0-4]\d{3}|'
         + '[0-5]?\d{0,3}\d):(429496729[0-5]|42949672[0-8]\d|'
         + '4294967[01]\d{2}|429496[0-6]\d{3}|42949[0-5]\d{4}|'
         + '4294[0-8]\d{5}|429[0-3]\d{6}|42[0-8]\d{7}|4[01]\d{8}|'
         + '[0-3]?\d{0,8}\d))|'
         + '(1:(((\d|[1-9]\d|1\d{2}|2[0-4]\d|25[0-5])\.){3}(\d|[1-9]\d|'
         + '1\d{2}|2[0-4]\d|25[0-5])):(6553[0-5]|655[0-2]\d|'
         + '65[0-4]\d{2}|6[0-4]\d{3}|[0-5]?\d{0,3}\d))|'
         + '(2:(429496729[0-5]|42949672[0-8]\d|4294967[01]\d{2}|'
         + '429496[0-6]\d{3}|42949[0-5]\d{4}|4294[0-8]\d{5}|'
         + '429[0-3]\d{6}|42[0-8]\d{7}|4[01]\d{8}|[0-3]?\d{0,8}\d):'
         + '(6553[0-5]|655[0-2]\d|65[0-4]\d{2}|6[0-4]\d{3}|'
         + '[0-5]?\d{0,3}\d))|'
         + '(([3-9a-fA-F]|[1-9a-fA-F][\da-fA-F]{1,3}):'
         + '[\da-fA-F]{1,12})';
       } uint8;
       description
         "A route distinguisher is an 8-octet value used to distinguish
          routes from different BGP VPNs (RFC 4364). A route
          distinguisher consists of three fields: A 2-octet type field,
          an administrator field, and an assigned
         "The number field.
          According to the data formats for type 0, 1, and 2 defined in
          RFC4364, the encoding pattern is defined as:

          0:2-octet-asn:4-octet-number
          1:4-octet-ipv4addr:2-octet-number
          2:4-octet-asn:2-octet-number.
          2-octet-other-hex-number:6-octet-hex-number

          Some valid examples are: 0:100:100, 1:1.1.1.1:100, and
          2:1234567890:203.";
       reference
         "RFC4364: BGP/MPLS IP Virtual Private Networks (VPNs).";
     }

     /*** collection of types common to multicast ***/ timer value intervals that should be
          interpreted as a failure.";
     }

     typedef ipv4-multicast-group-address timer-value-seconds16 {
       type inet:ipv4-address union {
         pattern '(2((2[4-9])|(3[0-9]))\.).*';
         type uint16 {
           range "1..65535";
           }
       description
         "This
         type represents an IPv4 multicast group address,
          which enumeration {
           enum "infinity" {
             description "The timer is in the range from 224.0.0.0 set to 239.255.255.255.";
       reference
         "RFC1112: Host Extensions for IP Multicasting."; infinity.";
           }
           enum "not-set" {
             description "The timer is not set.";
           }
         }
       }
       units seconds;
       description "Timer value type, in seconds (16-bit range).";
     }

     typedef ipv6-multicast-group-address timer-value-seconds32 {
       type inet:ipv6-address union {
         pattern
           '(([fF]{2}[0-9a-fA-F]{2}):).*';
       }
       description
         "This
         type represents an IPv6 multicast group address,
          which is in the uint32 {
           range of FF00::/8.";
       reference
         "RFC4291: IP Version 6 Addressing Architecture. Sec 2.7.
          RFC7346: IPv6 Multicast Address Scopes."; "1..4294967295";
           }

     typedef ip-multicast-group-address {
         type union enumeration {
         type ipv4-multicast-group-address;
         type ipv6-multicast-group-address;
           enum "infinity" {
             description "The timer is set to infinity.";

           }
           enum "not-set" {
             description
        "This type represents an IP multicast group address and "The timer is IP
         version neutral. The format of the textual representation
         implies the IP version."; not set.";
           }
         }
       }
       units seconds;
       description "Timer value type, in seconds (32-bit range).";
     }

     typedef ipv4-multicast-source-address timer-value-milliseconds {
       type union {
         type uint32{
           range "1..4294967295";
           }
         type enumeration {
           enum '*' "infinity" {
             description
             "Any source address."; "The timer is set to infinity.";
           }
           enum "not-set" {
             description "The timer is not set.";
           }
         }
         type inet:ipv4-address;
       }
       units milliseconds;
       description
         "Multicast source IPv4 address type."; "Timer value type, in milliseconds.";
     }

     typedef ipv6-multicast-source-address {
       type union percentage {
         type enumeration {
           enum '*' uint8 {
             description
             "Any source address.";
             range "0..100";
         }
        description
            "Integer indicating a percentage value";
     }

     typedef timeticks64 {
         type inet:ipv6-address;
       } uint64;
        description
         "Multicast source IPv6 address type.";
         "This type is based on the timeticks type defined in
         RFC 6991, but with 64-bit width.  It represents the time,
         modulo 2^64, in hundredths of a second between two epochs.";
        reference
            "RFC 6991 - Common YANG Data Types";
     }

     /*** collection of types common related to protocols MPLS/GMPLS ***/
     typedef bandwidth-ieee-float32 generalized-label {
       type string {
         pattern
           '0[xX](0((\.0?)?[pP](\+)?0?|(\.0?))|'
         + '1(\.([\da-fA-F]{0,5}[02468aAcCeE]?)?)?[pP](\+)?(12[0-7]|'
         + '1[01]\d|0?\d?\d)?)';
       } binary;
       description
         "Bandwidth in IEEE 754 floating point 32-bit binary format:
          (-1)**(S) * 2**(Exponent-127) * (1 + Fraction),
          where Exponent uses 8 bits,
         "Generalized label. Nodes sending and Fraction uses 23 bits.
          The units are octets per second.
          The encoding format is receiving the external hexadecimal-significand
          character sequences specified in IEEE 754 and C99,
          restricted to be normalized, non-negative, and non-fraction:
          0x1.hhhhhhp{+}d or 0X1.HHHHHHP{+}D
          where 'h' and 'H'
          Generalized Label are hexadecimal digits, 'd' aware of the link-specific
          label context and 'D' are
          integers type.";
       reference "RFC3471: Section 3.2";
     }

     identity mpls-label-special-purpose-value {
       description
         "Base identity for deriving identities describing
          special-purpose Multiprotocol Label Switching (MPLS) label
          values.";
       reference
         "RFC7274: Allocating and Retiring Special-Purpose MPLS
          Labels.";
     }

     identity ipv4-explicit-null-label {
       base mpls-label-special-purpose-value;
       description
         "This identity represents the IPv4 Explicit NULL Label.";
       reference
         "RFC3032: MPLS Label Stack Encoding. Section 2.1.";
     }

     identity router-alert-label {
       base mpls-label-special-purpose-value;
       description
         "This identity represents the Router Alert Label.";
       reference
         "RFC3032: MPLS Label Stack Encoding. Section 2.1.";
     }

     identity ipv6-explicit-null-label {
       base mpls-label-special-purpose-value;
       description
         "This identity represents the IPv6 Explicit NULL Label.";
       reference
         "RFC3032: MPLS Label Stack Encoding. Section 2.1.";
     }

     identity implicit-null-label {
       base mpls-label-special-purpose-value;
       description
         "This identity represents the Implicit NULL Label.";
       reference
         "RFC3032: MPLS Label Stack Encoding. Section 2.1.";

     }

     identity entropy-label-indicator {
       base mpls-label-special-purpose-value;
       description
         "This identity represents the Entropy Label Indicator.";
       reference
         "RFC6790: The Use of Entropy Labels in MPLS Forwarding.
          Sections 3 and 10.1.";
     }

     identity gal-label {
       base mpls-label-special-purpose-value;
       description
         "This identity represents the range Generic Associated Channel Label
          (GAL).";
       reference
         "RFC5586: MPLS Generic Associated Channel.
          Sections 4 and 10.";
     }

     identity oam-alert-label {
       base mpls-label-special-purpose-value;
       description
         "This identity represents the OAM Alert Label.";
       reference
         "RFC3429: Assignment of [0..127].
          When six hexadecimal digits are used the 'OAM Alert Label' for 'hhhhhh' or 'HHHHHH', Multiprotocol
          Label Switching Architecture (MPLS) Operation and Maintenance
          (OAM) Functions.
          Sections 3 and 6.";
     }

     identity extension-label {
       base mpls-label-special-purpose-value;
       description
         "This identity represents the least significant digit must be an even number.
          'x' Extension Label.";
       reference
         "RFC7274: Allocating and 'X' indicate hexadecimal; 'p' Retiring Special-Purpose MPLS Labels.
          Sections 3.1 and 'P' indicate power 5.";
     }

     typedef mpls-label-special-purpose {
       type identityref {
         base mpls-label-special-purpose-value;
       }
       description
         "This type represents the special-purpose Multiprotocol Label
          Switching (MPLS) label values.";

       reference
         "RFC3032: MPLS Label Stack Encoding.
          RFC7274: Allocating and Retiring Special-Purpose MPLS
          Labels.";
     }

     typedef mpls-label-general-use {
       type uint32 {
         range "16..1048575";
       }
       description
         "The 20-bit label values in an MPLS label stack entry,
          specified in RFC3032. This label value does not include
          the encodings of two.
          Some examples are: 0x0p0, 0x1p10, Traffic Class and 0x1.abcde2p+20"; TTL (time to live).
          The label range specified by this type is for general use,
          with special-purpose MPLS label values excluded.";
       reference
         "IEEE Std 754-2008: IEEE Standard
         "RFC3032: MPLS Label Stack Encoding.";
     }

     typedef mpls-label {
       type union {
         type mpls-label-special-purpose;
         type mpls-label-general-use;
       }
       description
         "The 20-bit label values in an MPLS label stack entry,
          specified in RFC3032. This label value does not include
          the encodings of Traffic Class and TTL (time to live).";
       reference
         "RFC3032: MPLS Label Stack Encoding.";
     }

     /*
      * Groupings
      */
     grouping mpls-label-stack {
       description
         "A grouping that specifies an MPLS label stack.";
       container mpls-label-stack {
         description
           "Container for Floating-Point
          Arithmetic."; a list of MPLS label stack entries.";
         list entry {
           key "id";
           description
             "List of MPLS label stack entries.";
           leaf id {
             type uint8;
             description
               "Identifies the sequence of an MPLS label stack entries.
                An entry with smaller ID value is precedes an entry in
                the label stack with a smaller ID.";
           }
           leaf label {
             type rt-types:mpls-label;
             description
               "Label value.";
           }
           leaf ttl {
             type uint8;
             description
               "Time to Live (TTL).";
             reference
               "RFC3032: MPLS Label Stack Encoding.";
           }
           leaf traffic-class {
             type uint8 {
               range "0..7";
             }
             description
               "Traffic Class (TC).";
             reference
               "RFC5462: Multiprotocol Label Switching (MPLS) Label
                Stack Entry: 'EXP' Field Renamed to 'Traffic Class'
                Field.";
           }
         }
       }
     }

     grouping vpn-route-targets {
       description
         "A grouping that specifies Route Target import-export rules
          used in the BGP enabled Virtual Private Networks (VPNs).";
       reference
         "RFC4364: BGP/MPLS IP Virtual Private Networks (VPNs).
          RFC4664: Framework for Layer 2 Virtual Private Networks
          (L2VPNs)";
       list vpn-target {
         key route-target;
         description
           "List of Route Targets.";
         leaf route-target {
           type rt-types:route-target;
           description
             "Route Target value";

         }
         leaf route-target-type {
           type rt-types:route-target-type;
           mandatory true;
           description
             "Import/export type of the Route Target.";
         }
       }
     }
   }
   <CODE ENDS>

4.  IANA Routing Types YANG Module

   <CODE BEGINS> file "iana-routing-types@2017-05-10.yang"
   module iana-routing-types {

     namespace "urn:ietf:params:xml:ns:yang:iana-routing-types";
     prefix "iana-rt-types";

     organization "IETF Routing Area Working Group (rtgwg)";

     contact
         "Routing Area Working Group - <rtgwg@ietf.org>";

     description
       "This module contains a collection of YANG data types
        considered defined by IANA and used for routing
        protocols.

        Copyright (c) 2017 IETF Trust and the persons identified as
        authors of the code.  All rights reserved.

        Redistribution and use in source and binary forms, with or
        without modification, is permitted pursuant to, and subject to
        the license terms contained in, the Simplified BSD License set
        forth in Section 4.c of the IETF Trust's Legal Provisions
        Relating to IETF Documents
        (http://trustee.ietf.org/license-info).

        The key words 'MUST', 'MUST NOT', 'REQUIRED', 'SHALL', 'SHALL
        NOT', 'SHOULD', 'SHOULD NOT', 'RECOMMENDED', 'MAY', and
        'OPTIONAL' in the module text are to be interpreted as described
        in RFC 2119.

        This version of this YANG module is part of RFC XXXX;
        see the RFC itself for full legal notices.";

     revision 2017-05-10 {
       description
         "Initial revision.";
       reference
         "RFC TBD: IANA Routing YANG Data Types";
     }

     /*** Collection of IANA types related to routing ***/

     /*** IANA address family Identies ***/
     identity address-family {
       description
         "Base identity from which identities describing address
          families are derived.";
     }
     identity ipv4 {
       base address-family;
       description
           "IPv4 Address Family - IANA Registry Assigned Number: 1";
     }
     identity ipv6 {
       base address-family;
       description
           "IPv6 Address Family - IANA Registry Assigned Number: 2";
     }
     identity nsap {
       base address-family;
       description
           "OSI Network Service Access Point (NSAP) Address Family -
            IANA Registry Assigned Number: 3";
     }
     identity hdlc {
       base address-family;
       description
           "High-Level Data Link Control (HDLC) Address Family -
            IANA Registry Assigned Number: 4";
     }
     identity bbn1822 {
       base address-family;
       description
           "Bolt, Beranek, and Newman Report 1822 (BBN 1822)
            Address Family - IANA Registry Assigned Number: 5";
     }
     identity ieee802 {
       base address-family;
       description
           "IEEE 802 Committee Address Family (aka, MAC address) -
            IANA Registry Assigned Number: 6";

     }
     identity e163 {
       base address-family;
       description
           "ITU-T E.163 Address Family -
            IANA Registry Assigned Number: 7";
     }
     identity e164 {
       base address-family;
       description
           "ITU-T E.164 (SMDS, Frame Relay, ATM) Address Family -
            IANA Registry Assigned Number: 8";
     }
     identity f69 {
       base address-family;
       description
           "ITU-T F.69 (Telex) Address Family -
            IANA Registry Assigned Number: 9";
     }
     identity x121 {
       base address-family;
       description
           "ITU-T X.121 (X.25, Frame Relay) Address Family -
            IANA Registry Assigned Number: 10";
     }
     identity ipx {
       base address-family;
       description
           "Novell Internetwork Packet Exchange (IPX)
            Address Family - IANA Registry Assigned Number: 11";
     }
     identity appletalk {
       base address-family;
       description
           "Apple AppleTalk Address Family -
            IANA Registry Assigned Number: 12";
     }
     identity decnet-iv {
       base address-family;
       description
           "Digital Equipment DECnet Phase IV Address Family -
            IANA Registry Assigned Number: 13";
     }
     identity vines {
       base address-family;
       description
           "Banyan Vines Address Family -
            IANA Registry Assigned Number: 14";

     }
     identity e164-nsap {
       base address-family;
       description
           "ITU-T E.164 with NSAP sub-address Address Family -
            IANA Registry Assigned Number: 15";
     }
     identity dns {
       base address-family;
       description
           "Domain Name System (DNS) Address Family -
            IANA Registry Assigned Number: 16";
     }

     typedef link-access-type {
       type enumeration {
         enum "broadcast"
     identity distinguished-name {
       base address-family;
       description
           "Specify broadcast multi-access network.";
           "Distinguished Name Address Family -
            IANA Registry Assigned Number: 17";
     }
         enum "non-broadcast-multiaccess"
     identity as-num {
       base address-family;
       description
           "Specify Non-Broadcast Multi-Access (NBMA) network.";
           "AS Number Family -
            IANA Registry Assigned Number: 18";
     }
         enum "point-to-multipoint"
     identity xtp-v4 {
       base address-family;
       description
           "Specify point-to-multipoint network.";
           "Xpress Transport Protocol (XTP) over IPv4
            Address Family - IANA Registry Assigned Number: 19";
     }
         enum "point-to-point"
     identity xtp-v6 {
       base address-family;
       description
           "Specify point-to-point network.";
         }
           "Xpress Transport Protocol (XTP) over IPv4
            Address Family - IANA Registry Assigned Number: 20";
     }
     identity xtp-native {
       base address-family;
       description
         "Link access type.";
           "Xpress Transport Protocol (XTP) native mode
            Address Family - IANA Registry Assigned Number: 21";
     }

     typedef timer-multiplier
     identity fc-port {
       type uint8;
       base address-family;
       description
         "The number of timer value intervals that should be
          interpreted as a failure.";
           "Fibre Channel (FC) World-Wide Port Name
            Address Family - IANA Registry Assigned Number: 22";

     }

     typedef timer-value-seconds16 {
       type union {
         type uint16
     identity fc-node {
           range "1..65535";
       base address-family;
       description
           "Fibre Channel (FC) World-Wide Node Name
            Address Family - IANA Registry Assigned Number: 23";
     }
         type enumeration {
           enum "infinity"
     identity gwid {
       base address-family;
       description "The timer is set to infinity.";
           "ATM Gateway Identifier (GWID) Number Family -
            IANA Registry Assigned Number: 24";
     }
           enum "not-set"
     identity l2vpn {
       base address-family;
       description "The timer is not set.";
           }
         }
           "Layer-2 VPN (L2VPN) Address Family -
            IANA Registry Assigned Number: 25";
     }
       units seconds;
     identity mpls-tp-section-eid {
       base address-family;
       description "Timer value type, in seconds (16 bit range).";
           "MPLS-TP Section Endpoint Identifier Address Family -
            IANA Registry Assigned Number: 26";
     }

     typedef timer-value-seconds32
     identity mpls-tp-lsp-eid {
       type union
       base address-family;
       description
           "MPLS-TP LSP Endpoint Identifier Address Family -
            IANA Registry Assigned Number: 27";
     }
     identity mpls-tp-pwe-eid {
         type uint32
       base address-family;
       description
           "MPLS-TP Pseudowire Endpoint Identifier
            Address Family - IANA Registry Assigned Number: 28";
     }
     identity mt-v4 {
           range "1..4294967295";
       base address-family;
       description
           "Multi-Topology IPv4 Address Family -
            Address Family - IANA Registry Assigned Number: 29";
     }
         type enumeration {
           enum "infinity"
     identity mt-v6 {
       base address-family;
       description "The timer is set to infinity.";
           "Multi-Topology IPv6 Address Family -
            Address Family - IANA Registry Assigned Number: 30";

     }
           enum "not-set"
     identity eigrp-common-sf {
       base address-family;
       description "The timer is not set.";
           }
         }
           "Enhanced Interior Gateway Routing Protocol (EIGRP)
            Common Service Family Address Family -
            IANA Registry Assigned Number: 16384";
     }
       units seconds;
     identity eigrp-v4-sf {
       base address-family;
       description "Timer value type, in seconds (32 bit range).";
           "Enhanced Interior Gateway Routing Protocol (EIGRP)
            IPv4 Service Family Address Family -
            IANA Registry Assigned Number: 16385";
     }

     typedef timer-value-milliseconds {
       type union
     identity eigrp-v6-sf {
         type uint32{
           range "1..4294967295";
       base address-family;
       description
           "Enhanced Interior Gateway Routing Protocol (EIGRP)
            IPv6 Service Family Address Family -
            IANA Registry Assigned Number: 16386";
     }
         type enumeration {
           enum "infinity"
     identity lcaf {
       base address-family;
       description "The timer is set to infinity.";
           "LISP Canonical Address Format (LCAF)
            Address Family - IANA Registry Assigned Number: 16387";
     }
           enum "not-set"
     identity bgp-ls {
       base address-family;
       description "The timer is not set.";
           }
         }
           "Border Gatway Protocol - Link State (BGP-LS)
            Address Family - IANA Registry Assigned Number: 16388";
     }
       units milliseconds;
     identity mac-48 {
       base address-family;
       description "Timer value type, in milliseconds.";
           "IEEE 48-bit Media Access Control (MAC)
            Address Family - IANA Registry Assigned Number: 16389";
     }

     /*** collection of types related to MPLS/GMPLS ***/
     typedef generalized-label
     identity mac-64 {
       type binary;
       base address-family;
       description
         "Generalized label. Nodes sending and receiving the
          Generalized Label know the kinds of link they are
          using. Hence, the Generalized Label does not identify
          its type.  Instead, nodes are expected to know from
          the context and type of label to expect.";
       reference "RFC3471: Section 3.2";
           "IEEE 64-bit Media Access Control (MAC)
            Address Family - IANA Registry Assigned Number: 16390";
     }
     identity mpls-label-special-purpose-value trill-oui {
       base address-family;
       description
         "Base
           "TRILL IEEE Organizationally Unique Identifier (OUI) -
            Address Family - IANA Registry Assigned Number: 16391";
     }
     identity for deriving identities describing
          special-purpose Multiprotocol Label Switching (MPLS) label
          values.";
       reference
         "RFC7274: Allocating and Retiring Special-Purpose MPLS
          Labels."; trill-mac-24 {
       base address-family;
       description
           "TRILL Final 3 octets of 48-bit MAC address
            Address Family - IANA Registry Assigned Number: 16392";
     }
     identity ipv4-explicit-null-label trill-mac-48 {
       base mpls-label-special-purpose-value; address-family;
       description
         "This identity represents the IPv4 Explicit NULL Label.";
       reference
         "RFC3032: MPLS Label Stack Encoding. Section 2.1.";
           "TRILL Final 5 octets of 64-bit MAC address
            Address Family - IANA Registry Assigned Number: 16393";
     }
     identity router-alert-label trill-rbridge-port-id {
       base mpls-label-special-purpose-value; address-family;
       description
         "This identity represents the Router Alert Label.";
       reference
         "RFC3032: MPLS Label Stack Encoding. Section 2.1.";
           "TRILL Remote Bridge (RBridge) Port ID
            Address Family - IANA Registry Assigned Number: 16394";
     }
     identity ipv6-explicit-null-label trill-nickname {
       base mpls-label-special-purpose-value; address-family;
       description
         "This identity represents the IPv6 Explicit NULL Label.";
       reference
         "RFC3032: MPLS Label Stack Encoding. Section 2.1.";
           "TRILL Nickname
            Address Family - IANA Registry Assigned Number: 16395";
     }

     /*** Subsequent Address Family for Multi-Protocol BGP */
     identity implicit-null-label bgp-safi {
       base mpls-label-special-purpose-value;
       description
         "This
         "Base identity represents the Implicit NULL Label.";
       reference
         "RFC3032: MPLS Label Stack Encoding. Section 2.1."; from which identities describing BGP
          Subsequent Address Family Identifier (SAFI) - RFC 4760.";
     }

     identity entropy-label-indicator unicast-safi {
       base mpls-label-special-purpose-value; bgp-safi;
       description
         "This identity represents the Entropy Label Indicator.";
       reference
         "RFC6790: The Use of Entropy Labels in MPLS Forwarding.
          Sections 3 and 10.1.";
         "Unicast SAFI -
          IANA Registry Assigned Number: 1";
     }

     identity gal-label multicast-safi {
       base mpls-label-special-purpose-value; bgp-safi;
       description
         "This identity represents the Generic Associated Channel Label
          (GAL).";
       reference
         "RFC5586: MPLS Generic Associated Channel.
          Sections 4 and 10.";
         "Multicast SAFI -
          IANA Registry Assigned Number: 2";

     }

     identity oam-alert-label labeled-unicast-safi {
       base mpls-label-special-purpose-value; bgp-safi;
       description
         "This identity represents the OAM Alert Label.";
       reference
         "RFC3429: Assignment of the 'OAM Alert Label' for Multiprotocol
          Label Switching Architecture (MPLS) Operation and Maintenance
          (OAM) Functions.
          Sections 3 and 6.";
         "Labeled Unicast SAFI -
          IANA Registry Assigned Number: 4";
     }

     identity extension-label multicast-vpn-safi {
       base mpls-label-special-purpose-value; bgp-safi;
       description
         "This identity represents the Extension Label.";
       reference
         "RFC7274: Allocating and Retiring Special-Purpose MPLS Labels.
          Sections 3.1 and 5.";
         "Multicast VPN SAFI -
          IANA Registry Assigned Number: 5";
     }

     typedef mpls-label-special-purpose {
       type identityref

     identity pseudowire-safi {
       base mpls-label-special-purpose-value;
       }
       description
         "This type represents the special-purpose Multiprotocol Label
          Switching (MPLS) label values.";
       reference
         "RFC3032: MPLS Label Stack Encoding.
          RFC7274: Allocating and Retiring Special-Purpose MPLS
          Labels."; bgp-safi;
       description
         "Multi-segment Pseudowire VPN SAFI -
          IANA Registry Assigned Number: 6";
     }

     typedef mpls-label-general-use

     identity tunnel-enap-safi {
       type uint32
       base bgp-safi;
       description
         "Tunnel Encap SAFI -
          IANA Registry Assigned Number: 7";
     }

     identity mcast-vpls-safi {
         range "16..1048575";
       base bgp-safi;
       description
         "Multicast Virtual Private LAN Service (VPLS) SAFI -
          IANA Registry Assigned Number: 8";
     }

     identity tunnel-safi {
       base bgp-safi;
       description
         "The 20 bits label values in an MPLS label stack entry,
          specified in RFC3032. This label value does not include
          the encodings of Traffic Class and TTL (time to live).
          The label range specified by this type is for general use,
          with special-purpose MPLS label values excluded.";
       reference
         "RFC3032: MPLS Label Stack Encoding.";
         "Tunnel SAFI -
          IANA Registry Assigned Number: 64";
     }

     typedef mpls-label

     identity vpls-safi {
       type union
       base bgp-safi;
       description
         "Virtual Private LAN Service (VPLS) SAFI -
          IANA Registry Assigned Number: 65";
     }

     identity mdt-safi {
         type mpls-label-special-purpose;
         type mpls-label-general-use;
       base bgp-safi;
       description
         "Multicast Distribution Tree (MDT) SAFI -
          IANA Registry Assigned Number: 66";
     }

     identity v4-over-v6-safi {
       base bgp-safi;
       description
         "The 20 bits label values in an MPLS label stack entry,
          specified in RFC3032. This label value does not include
          the encodings of Traffic Class and TTL (time to live).";
       reference
         "RFC3032: MPLS Label Stack Encoding.";
         "IPv4 over IPv6 SAFI -
          IANA Registry Assigned Number: 67";
     }

     /*
      * Groupings
      */
     grouping mpls-label-stack

     identity v6-over-v4-safi {
       base bgp-safi;
       description
         "A grouping that specifies an MPLS label stack.";
       container mpls-label-stack
         "IPv6 over IPv4 SAFI -
          IANA Registry Assigned Number: 68";
     }

     identity l1-vpn-auto-discovery-safi {
       base bgp-safi;
       description
           "Container for a list of MPLS label stack entries.";
         list entry
         "Layer-1 VPN Auto Discovery SAFI -
          IANA Registry Assigned Number: 69";
     }

     identity evpn-safi {
           key "id";
       base bgp-safi;
       description
             "List of MPLS label stack entries.";
           leaf id
         "Ethernet VPN (EVPN) SAFI -
          IANA Registry Assigned Number: 70";
     }

     identity bgp-ls-safi {
             type uint8;
       base bgp-safi;
       description
               "Identifies the sequence of an MPLS label stack entries.
                An entry with smaller ID value is precedes an entry in
                the label stack with a smaller ID.";
         "BGP Link-State (BGP-LS) SAFI -
          IANA Registry Assigned Number: 71";
     }
           leaf label

     identity bgp-ls-vpn-safi {
             type rt-types:mpls-label;
       base bgp-safi;
       description
               "Label value.";
         "BGP Link-State (BGP-LS) VPN SAFI -
          IANA Registry Assigned Number: 72";
     }
           leaf ttl

     identity sr-te-safi {
             type uint8;
       base bgp-safi;
       description
               "Time to Live (TTL).";
             reference
               "RFC3032: MPLS Label Stack Encoding.";
         "Segment Routing - Traffic Engineering (SR-TE) SAFI -
          IANA Registry Assigned Number: 73";
     }
           leaf traffic-class {
             type uint8

     identity labeled-vpn-safi {
               range "0..7";
             }
       base bgp-safi;
       description
               "Traffic Class (TC).";
             reference
               "RFC5462: Multiprotocol Label Switching (MPLS) Label
                Stack Entry: 'EXP' Field Renamed to 'Traffic Class'
                Field.";
           }
         }
       }
         "MPLS Labeled VPN SAFI -
          IANA Registry Assigned Number: 128";
     } // mpls-label-stack

     grouping vpn-route-targets

     identity multicast-mpls-vpn-safi {
       base bgp-safi;
       description
         "A grouping that specifies Route Target import-export rules
          used in the BGP enabled Virtual Private Networks (VPNs).";
       reference
         "RFC4364:
         "Multicast for BGP/MPLS IP Virtual Private Networks (VPNs).
          RFC4664: Framework for Layer 2 Virtual Private Networks
          (L2VPNs)";
       list vpn-target {
         key route-target;
         description
           "List of Route Targets.";
         leaf route-target VPN SAFI -
          IANA Registry Assigned Number: 129";
     }

     identity route-target-safi {
           type rt-types:route-target;
       base bgp-safi;
       description
         "Route Target value"; SAFI -
          IANA Registry Assigned Number: 132";
     }
         leaf route-target-type

     identity ipv4-flow-spec-safi {
           type rt-types:route-target-type;
           mandatory true;
       base bgp-safi;
       description
             "Import/export type of the Route Target.";
         }
         "IPv4 Flow Specification SAFI -
          IANA Registry Assigned Number: 133";
     }

     identity vpnv4-flow-spec-safi {
       base bgp-safi;
       description
         "IPv4 VPN Flow Specification SAFI -
          IANA Registry Assigned Number: 134";
     } // vpn-route-targets
   }
   <CODE ENDS>

4.

5.  IANA Considerations

   RFC Ed.: In this section, replace all occurrences of 'XXXX' with the
   actual RFC number (and remove this note).

   This document registers the following namespace URIs in the IETF XML
   registry [RFC3688]:

   --------------------------------------------------------------------
   URI: urn:ietf:params:xml:ns:yang:ietf-routing-types
   Registrant Contact: The IESG.
   XML: N/A, the requested URI is an XML namespace.
   --------------------------------------------------------------------

   --------------------------------------------------------------------
   URI: urn:ietf:params:xml:ns:yang:iana-routing-types
   Registrant Contact: The IESG.
   XML: N/A, the requested URI is an XML namespace.
   --------------------------------------------------------------------

   This document registers the following YANG modules in the YANG Module
   Names registry [RFC6020]:

   --------------------------------------------------------------------
   name:         ietf-routing-types
   namespace:    urn:ietf:params:xml:ns:yang:ietf-routing-types
   prefix:       rt-types
   reference:    RFC XXXX
   --------------------------------------------------------------------

5.

   --------------------------------------------------------------------
   name:         iana-routing-types
   namespace:    urn:ietf:params:xml:ns:yang:iana-routing-types
   prefix:       iana-rt-types
   reference:    RFC XXXX
   --------------------------------------------------------------------

6.  Security Considerations

   This document defines common data types using the YANG data modeling
   language.  The definitions themselves have no security impact on the
   Internet, but the usage of these definitions in concrete YANG modules
   might have.  The security considerations spelled out in the YANG
   specification [RFC7950] apply for this document as well.

6.

7.  Acknowledgements

   The Routing Area Yang Architecture design team members included Acee
   Lindem, Anees Shaikh, Christian Hopps, Dean Bogdanovic, Ebben Aries,
   Lou Berger, Qin Wu, Rob Shakir, Xufeng Liu, and Yingzhen Qu.

7.

8.  References

7.1.

8.1.  Normative References

   [RFC2119]  Bradner, S., "Key words for use in RFCs to Indicate
              Requirement Levels", BCP 14, RFC 2119, DOI 10.17487/RFC2119, 10.17487/
              RFC2119, March 1997,
              <http://www.rfc-editor.org/info/rfc2119>.

   [RFC6020]  Bjorklund, M., Ed., "YANG - A Data Modeling Language for
              the Network Configuration Protocol (NETCONF)", RFC 6020,
              DOI 10.17487/RFC6020, October 2010,
              <http://www.rfc-editor.org/info/rfc6020>.

   [RFC6021]  Schoenwaelder, J., Ed., "Common YANG Data Types", RFC
              6021, DOI 10.17487/RFC6021, October 2010,
              <http://www.rfc-editor.org/info/rfc6021>.

   [RFC7950]  Bjorklund, M., Ed., "The YANG 1.1 Data Modeling Language",
              RFC 7950, DOI 10.17487/RFC7950, August 2016,
              <http://www.rfc-editor.org/info/rfc7950>.

7.2.

8.2.  Informative References

   [IEEE754]  IEEE, "IEEE Standard for Floating-Point Arithmetic", IEEE
              Std 754-2008, August 2008.

   [I-D.ietf-bfd-yang]
              Zheng, L.,
              Rahman, R., Zheng, L., Networks, J., Jethanandani, M., and
              G. Mirsky, "Yang Data Model for Bidirectional Forwarding
              Detection (BFD)", draft-ietf-bfd-yang-04 draft-ietf-bfd-yang-05 (work in
              progress), January March 2017.

   [I-D.ietf-idr-bgp-model]
              Shaikh, A., Shakir, R., Patel, K., Hares, S., D'Souza, K.,
              Bansal, D., Clemm, A., Zhdankin, A., Jethanandani, M., and
              X. Liu, "BGP Model for Service Provider Networks", draft-
              ietf-idr-bgp-model-02 (work in progress), July 2016.

   [I-D.ietf-ospf-yang]
              Yeung, D., Qu, Y., Zhang, Z., Chen, I., and A. Lindem,
              "Yang Data Model for OSPF Protocol", draft-ietf-ospf-
              yang-06
              yang-07 (work in progress), October 2016. March 2017.

   [I-D.ietf-pim-yang]
              Liu, X., McAllister, P., Peter, A., Sivakumar, M., Liu,
              Y., and f. hu, "A YANG data model for Protocol-Independent
              Multicast (PIM)", draft-ietf-pim-yang-05 draft-ietf-pim-yang-08 (work in
              progress), February April 2017.

   [I-D.ietf-teas-yang-rsvp]
              Beeram, V., Saad, T., Gandhi, R., Liu, X., Shah, H., Chen,
              X., Jones, R., Bryskin, I.,
              and B. Wen, H. Shah, "A YANG Data Model for Resource Reservation
              Protocol (RSVP)", draft-ietf-teas-yang-rsvp-06 draft-ietf-teas-yang-rsvp-07 (work in
              progress), October 2016. March 2017.

   [I-D.ietf-teas-yang-te]
              Saad, T., Gandhi, R., Liu, X., Beeram, V., Shah, H.,
              Bryskin, I., Chen, X., Jones, R., and B. Wen,
              I. Bryskin, "A YANG Data Model for Traffic Engineering
              Tunnels and Interfaces",
              draft-ietf-teas-yang-te-05 draft-ietf-teas-yang-te-06 (work
              in progress), October
              2016. March 2017.

   [I-D.ietf-bess-l2vpn-yang]
              Shah, H., Brissette, P., Chen, I., Hussain, I., and B. Wen, B.,
              and K. Tiruveedhula, "YANG Data Model for MPLS-based
              L2VPN", draft-ietf-
              bess-l2vpn-yang-02 draft-ietf-bess-l2vpn-yang-05 (work in progress), October 2016.
              March 2017.

   [I-D.ietf-mpls-base-yang]
              Raza, K., Gandhi, R., Liu, X., Beeram, V., Saad, T.,
              Bryskin, I., Chen, X., Jones, R., and B. Wen, "A YANG Data
              Model for MPLS Base", draft-ietf-mpls-base-yang-01 draft-ietf-mpls-base-yang-04 (work
              in progress), July 2016. March 2017.

   [RFC3032]  Rosen, E., Tappan, D., Fedorkow, G., Rekhter, Y.,
              Farinacci, D., Li, T., and A. Conta, "MPLS Label Stack
              Encoding", RFC 3032, DOI 10.17487/RFC3032, January 2001,
              <http://www.rfc-editor.org/info/rfc3032>.

   [RFC3209]  Awduche, D., Berger, L., Gan, D., Li, T., Srinivasan, V.,
              and G. Swallow, "RSVP-TE: Extensions to RSVP for LSP
              Tunnels", RFC 3209, DOI 10.17487/RFC3209, December 2001,
              <http://www.rfc-editor.org/info/rfc3209>.

   [RFC3471]  Berger, L., Ed., "Generalized Multi-Protocol Label
              Switching (GMPLS) Signaling Functional Description", RFC
              3471, DOI 10.17487/RFC3471, January 2003,
              <http://www.rfc-editor.org/info/rfc3471>.

   [RFC4364]  Rosen, E. and Y. Rekhter, "BGP/MPLS IP Virtual Private
              Networks (VPNs)", RFC 4364, DOI 10.17487/RFC4364, February
              2006, <http://www.rfc-editor.org/info/rfc4364>.

   [RFC4664]  Andersson, L., Ed. and E. Rosen, Ed., "Framework for Layer
              2 Virtual Private Networks (L2VPNs)", RFC 4664, DOI
              10.17487/RFC4664, September 2006,
              <http://www.rfc-editor.org/info/rfc4664>.

   [RFC5880]  Katz, D. and D. Ward, "Bidirectional Forwarding Detection
              (BFD)", RFC 5880, DOI 10.17487/RFC5880, June 2010,
              <http://www.rfc-editor.org/info/rfc5880>.

   [RFC6991]  Schoenwaelder, J., Ed., "Common YANG Data Types", RFC
              6991, DOI 10.17487/RFC6991, July 2013,
              <http://www.rfc-editor.org/info/rfc6991>.

   [RFC7274]  Kompella, K., Andersson, L., and A. Farrel, "Allocating
              and Retiring Special-Purpose MPLS Labels", RFC 7274, DOI
              10.17487/RFC7274, June 2014,
              <http://www.rfc-editor.org/info/rfc7274>.

7.3.

8.3.  URIs

   [1] http://www.iana.org/assignments/address-family-numbers/address-
       family-numbers.xhtml

   [2] http://www.iana.org/assignments/address-family-numbers/address-
       family-numbers.xhtml

   [3] https://www.iana.org/assignments/safi-namespace/safi-
       namespace.xhtml#safi-namespace-2

Authors' Addresses

   Xufeng Liu
   Jabil
   8281 Greensboro Drive, Suite 200
   McLean  VA 22102
   USA

   EMail: Xufeng_Liu@jabil.com
   Yingzhen Qu
   Futurewei Technologies, Inc.
   2330 Central Expressway
   Santa Clara  CA 95050
   USA

   EMail: yingzhen.qu@huawei.com

   Acee Lindem
   Cisco Systems
   301 Midenhall Way
   Cary, NC  27513
   USA

   EMail: acee@cisco.com

   Christian Hopps
   Deutsche Telekom

   EMail: chopps@chopps.org

   Lou Berger
   LabN Consulting, L.L.C.

   EMail: lberger@labn.net