draft-ietf-rtgwg-routing-types-08.txt   draft-ietf-rtgwg-routing-types-09.txt 
Network Working Group X. Liu Network Working Group X. Liu
Internet-Draft Jabil Internet-Draft Jabil
Intended status: Standards Track Y. Qu Intended status: Standards Track Y. Qu
Expires: December 31, 2017 Futurewei Technologies, Inc. Expires: February 20, 2018 Futurewei Technologies, Inc.
A. Lindem A. Lindem
Cisco Systems Cisco Systems
C. Hopps C. Hopps
Deutsche Telekom Deutsche Telekom
L. Berger L. Berger
LabN Consulting, L.L.C. LabN Consulting, L.L.C.
June 29, 2017 August 19, 2017
Routing Area Common YANG Data Types Routing Area Common YANG Data Types
draft-ietf-rtgwg-routing-types-08 draft-ietf-rtgwg-routing-types-09
Abstract Abstract
This document defines a collection of common data types using the This document defines a collection of common data types using the
YANG data modeling language. These derived common types are designed YANG data modeling language. These derived common types are designed
to be imported by other modules defined in the routing area. to be imported by other modules defined in the routing area.
Status of This Memo Status of This Memo
This Internet-Draft is submitted in full conformance with the This Internet-Draft is submitted in full conformance with the
skipping to change at page 1, line 39 skipping to change at page 1, line 39
Internet-Drafts are working documents of the Internet Engineering Internet-Drafts are working documents of the Internet Engineering
Task Force (IETF). Note that other groups may also distribute Task Force (IETF). Note that other groups may also distribute
working documents as Internet-Drafts. The list of current Internet- working documents as Internet-Drafts. The list of current Internet-
Drafts is at http://datatracker.ietf.org/drafts/current/. Drafts is at http://datatracker.ietf.org/drafts/current/.
Internet-Drafts are draft documents valid for a maximum of six months Internet-Drafts are draft documents valid for a maximum of six months
and may be updated, replaced, or obsoleted by other documents at any and may be updated, replaced, or obsoleted by other documents at any
time. It is inappropriate to use Internet-Drafts as reference time. It is inappropriate to use Internet-Drafts as reference
material or to cite them other than as "work in progress." material or to cite them other than as "work in progress."
This Internet-Draft will expire on December 31, 2017. This Internet-Draft will expire on February 20, 2018.
Copyright Notice Copyright Notice
Copyright (c) 2017 IETF Trust and the persons identified as the Copyright (c) 2017 IETF Trust and the persons identified as the
document authors. All rights reserved. document authors. All rights reserved.
This document is subject to BCP 78 and the IETF Trust's Legal This document is subject to BCP 78 and the IETF Trust's Legal
Provisions Relating to IETF Documents Provisions Relating to IETF Documents
(http://trustee.ietf.org/license-info) in effect on the date of (http://trustee.ietf.org/license-info) in effect on the date of
publication of this document. Please review these documents publication of this document. Please review these documents
skipping to change at page 2, line 16 skipping to change at page 2, line 16
include Simplified BSD License text as described in Section 4.e of include Simplified BSD License text as described in Section 4.e of
the Trust Legal Provisions and are provided without warranty as the Trust Legal Provisions and are provided without warranty as
described in the Simplified BSD License. described in the Simplified BSD License.
Table of Contents Table of Contents
1. Introduction . . . . . . . . . . . . . . . . . . . . . . . . 2 1. Introduction . . . . . . . . . . . . . . . . . . . . . . . . 2
1.1. Terminology . . . . . . . . . . . . . . . . . . . . . . . 2 1.1. Terminology . . . . . . . . . . . . . . . . . . . . . . . 2
2. Overview . . . . . . . . . . . . . . . . . . . . . . . . . . 2 2. Overview . . . . . . . . . . . . . . . . . . . . . . . . . . 2
3. IETF Routing Types YANG Module . . . . . . . . . . . . . . . 6 3. IETF Routing Types YANG Module . . . . . . . . . . . . . . . 6
4. IANA Routing Types YANG Module . . . . . . . . . . . . . . . 23 4. IANA Routing Types YANG Module . . . . . . . . . . . . . . . 22
5. IANA Considerations . . . . . . . . . . . . . . . . . . . . . 34 5. IANA Considerations . . . . . . . . . . . . . . . . . . . . . 33
5.1. IANA-Maintained iana-routing-types Module . . . . . . . . 35 5.1. IANA-Maintained iana-routing-types Module . . . . . . . . 34
6. Security Considerations . . . . . . . . . . . . . . . . . . . 36 6. Security Considerations . . . . . . . . . . . . . . . . . . . 35
7. Acknowledgements . . . . . . . . . . . . . . . . . . . . . . 36 7. Acknowledgements . . . . . . . . . . . . . . . . . . . . . . 35
8. References . . . . . . . . . . . . . . . . . . . . . . . . . 36 8. References . . . . . . . . . . . . . . . . . . . . . . . . . 35
8.1. Normative References . . . . . . . . . . . . . . . . . . 36 8.1. Normative References . . . . . . . . . . . . . . . . . . 35
8.2. Informative References . . . . . . . . . . . . . . . . . 37 8.2. Informative References . . . . . . . . . . . . . . . . . 36
Authors' Addresses . . . . . . . . . . . . . . . . . . . . . . . 39 Authors' Addresses . . . . . . . . . . . . . . . . . . . . . . . 38
1. Introduction 1. Introduction
The YANG [RFC6020] [RFC7950] is a data modeling language used to The YANG [RFC6020] [RFC7950] is a data modeling language used to
model configuration data, state data, Remote Procedure Calls, and model configuration data, state data, Remote Procedure Calls, and
notifications for network management protocols. The YANG language notifications for network management protocols. The YANG language
supports a small set of built-in data types and provides mechanisms supports a small set of built-in data types and provides mechanisms
to derive other types from the built-in types. to derive other types from the built-in types.
This document introduces a collection of common data types derived This document introduces a collection of common data types derived
skipping to change at page 3, line 11 skipping to change at page 3, line 11
These include: These include:
router-id router-id
Router Identifiers are commonly used to identify a nodes in Router Identifiers are commonly used to identify a nodes in
routing and other control plane protocols. An example usage of routing and other control plane protocols. An example usage of
router-id can be found in [I-D.ietf-ospf-yang]. router-id can be found in [I-D.ietf-ospf-yang].
route-target route-target
Route Targets (RTs) are commonly used to control the distribution Route Targets (RTs) are commonly used to control the distribution
of virtual routing and forwarding (VRF) information, see of virtual routing and forwarding (VRF) information, see
[RFC4364], in support of virtual private networks (VPNs). An [RFC4364], in support of BGP/MPLS IP virtual private networks
example usage can be found in [I-D.ietf-bess-l2vpn-yang]. (VPNs) and BGP/MPLS Ethernet VPNs [RFC7432]. An example usage can
be found in [I-D.ietf-bess-l2vpn-yang].
ipv6-route-target ipv6-route-target
IPv6 Route Targets (RTs) are similar to standard Route Targets IPv6 Route Targets (RTs) are similar to standard Route Targets
only they IPv6 Address Specific BGP Extended Communities as only they IPv6 Address Specific BGP Extended Communities as
described in [RFC5701]. An IPv6 Route Target is 20 octets and described in [RFC5701]. An IPv6 Route Target is 20 octets and
includes an IPv6 address as the global administrator. includes an IPv6 address as the global administrator.
route-target-type route-target-type
This type defines the import and export rules of Route Targets, as This type defines the import and export rules of Route Targets, as
descibed in Section 4.3.1 of [RFC4364]. An example usage can be descibed in Section 4.3.1 of [RFC4364]. An example usage can be
skipping to change at page 3, line 36 skipping to change at page 3, line 37
Route Distinguishers (RDs) are commonly used to identify separate Route Distinguishers (RDs) are commonly used to identify separate
routes in support of virtual private networks (VPNs). For routes in support of virtual private networks (VPNs). For
example, in [RFC4364], RDs are commonly used to identify example, in [RFC4364], RDs are commonly used to identify
independent VPNs and VRFs, and more generally, to identify independent VPNs and VRFs, and more generally, to identify
multiple routes to the same prefix. An example usage can be found multiple routes to the same prefix. An example usage can be found
in [I-D.ietf-idr-bgp-model]. in [I-D.ietf-idr-bgp-model].
route-origin route-origin
Route Origin is commonly used to indicate the Site of Origin for Route Origin is commonly used to indicate the Site of Origin for
Routng and forwarding (VRF) information, see [RFC4364], in support Routng and forwarding (VRF) information, see [RFC4364], in support
of virtual private networks (VPNs). An example usage can be found of BGP/MPLS IP virtual private networks (VPNs) and BGP/MPLS
in [I-D.ietf-bess-l3vpn-yang]. Ethernet VPNs [RFC7432]. An example usage can be found in
[I-D.ietf-bess-l3vpn-yang].
ipv6-route-origin ipv6-route-origin
An IPv6 Route Origin would also be used to indicate the Site of An IPv6 Route Origin would also be used to indicate the Site of
Origin for Routng and forwarding (VRF) information, see [RFC4364], Origin for Routng and forwarding (VRF) information, see [RFC4364],
in support of virtual private networks (VPNs). IPv6 Route Origins in support of virtual private networks (VPNs). IPv6 Route Origins
are IPv6 Address Specific BGP Extended Communities as described in are IPv6 Address Specific BGP Extended Communities as described in
[RFC5701]. An IPv6 Route Origin is 20 octets and includes an IPv6 [RFC5701]. An IPv6 Route Origin is 20 octets and includes an IPv6
address as the global administrator. address as the global administrator.
ipv4-multicast-group-address ipv4-multicast-group-address
skipping to change at page 6, line 24 skipping to change at page 6, line 28
This grouping defines a reusable collection of schema nodes This grouping defines a reusable collection of schema nodes
representing an MPLS label stack [RFC3032]. An example usage can representing an MPLS label stack [RFC3032]. An example usage can
be found in [I-D.ietf-mpls-base-yang]. be found in [I-D.ietf-mpls-base-yang].
vpn-route-targets vpn-route-targets
This grouping defines a reusable collection of schema nodes This grouping defines a reusable collection of schema nodes
representing Route Target import-export rules used in the BGP representing Route Target import-export rules used in the BGP
enabled Virtual Private Networks (VPNs). [RFC4364][RFC4664]. An enabled Virtual Private Networks (VPNs). [RFC4364][RFC4664]. An
example usage can be found in [I-D.ietf-bess-l2vpn-yang]. example usage can be found in [I-D.ietf-bess-l2vpn-yang].
geo-coordinates
This grouping defines a reusable collection of schema nodes
representing the Geo-coordinates in IETF models. The schema modes
specify the location of an object using the WGS-84 (World Geodetic
System) reference coordinate system [WGS84]. This is expected to
used in augmentations to routing protocol models such as
[I-D.ietf-ospf-yang].
The iana-routing-types model contains common routing types The iana-routing-types model contains common routing types
corresponding directly to IANA mappings. These include: corresponding directly to IANA mappings. These include:
address-family address-family
This type defines values for use in address family identifiers. This type defines values for use in address family identifiers.
The values are based on the IANA Address Family Numbers Registry The values are based on the IANA Address Family Numbers Registry
[IANA-ADDRESS-FAMILY-REGISTRY]. An example usage can be found in [IANA-ADDRESS-FAMILY-REGISTRY]. An example usage can be found in
[I-D.ietf-idr-bgp-model]. [I-D.ietf-idr-bgp-model].
subsequent-address-family subsequent-address-family
This type defines values for use in subsequent address family This type defines values for use in subsequent address family
(SAFI) identifiers. The values are based on the IANA Subsequent (SAFI) identifiers. The values are based on the IANA Subsequent
Address Family Identifiers (SAFI) Parameters Registry Address Family Identifiers (SAFI) Parameters Registry
[IANA-SAFI-REGISTRY]. [IANA-SAFI-REGISTRY].
3. IETF Routing Types YANG Module 3. IETF Routing Types YANG Module
<CODE BEGINS> file "ietf-routing-types@2017-06-29.yang" <CODE BEGINS> file "ietf-routing-types@2017-08-16.yang"
module ietf-routing-types { module ietf-routing-types {
namespace "urn:ietf:params:xml:ns:yang:ietf-routing-types"; namespace "urn:ietf:params:xml:ns:yang:ietf-routing-types";
prefix rt-types; prefix rt-types;
import ietf-yang-types { import ietf-yang-types {
prefix yang; prefix yang;
}
import ietf-inet-types {
prefix inet;
}
organization }
"IETF RTGWG - Routing Area Working Group"; import ietf-inet-types {
contact prefix inet;
"WG Web: <http://tools.ietf.org/wg/rtgwg/> }
WG List: <mailto:rtgwg@ietf.org>
Editor: Xufeng Lui organization
<mailto:Xufeng_Lui@jabail.com> "IETF RTGWG - Routing Area Working Group";
Yingzhen Qu contact
<mailto:yingzhen.qu@huawei.com> "WG Web: <http://tools.ietf.org/wg/rtgwg/>
Acee Lindem WG List: <mailto:rtgwg@ietf.org>
<mailto:acee@cisco.com>
Christian Hopps
<mailto:chopps@chopps.org>
Lou Berger
<mailto:lberger@labn.com>";
description
"This module contains a collection of YANG data types
considered generally useful for routing protocols.
Copyright (c) 2017 IETF Trust and the persons Editor: Xufeng Lui
identified as authors of the code. All rights reserved. <mailto:Xufeng_Lui@jabail.com>
Yingzhen Qu
<mailto:yingzhen.qu@huawei.com>
Acee Lindem
<mailto:acee@cisco.com>
Christian Hopps
<mailto:chopps@chopps.org>
Lou Berger
<mailto:lberger@labn.com>";
description
"This module contains a collection of YANG data types
considered generally useful for routing protocols.
Redistribution and use in source and binary forms, with or Copyright (c) 2017 IETF Trust and the persons
without modification, is permitted pursuant to, and subject identified as authors of the code. All rights reserved.
to the license terms contained in, the Simplified BSD License
set forth in Section 4.c of the IETF Trust's Legal Provisions
Relating to IETF Documents
(http://trustee.ietf.org/license-info).
This version of this YANG module is part of RFC XXXX; see Redistribution and use in source and binary forms, with or
the RFC itself for full legal notices."; without modification, is permitted pursuant to, and subject
reference "RFC XXXX"; to the license terms contained in, the Simplified BSD License
set forth in Section 4.c of the IETF Trust's Legal Provisions
Relating to IETF Documents
(http://trustee.ietf.org/license-info).
revision 2017-06-29 { This version of this YANG module is part of RFC XXXX; see
description the RFC itself for full legal notices.";
"Initial revision."; reference "RFC XXXX";
reference "RFC TBD: Routing YANG Data Types";
}
/*** Identities related to MPLS/GMPLS ***/
identity mpls-label-special-purpose-value { revision 2017-06-29 {
description description
"Base identity for deriving identities describing "Initial revision.";
special-purpose Multiprotocol Label Switching (MPLS) label reference "RFC TBD: Routing YANG Data Types";
values."; }
reference
"RFC7274: Allocating and Retiring Special-Purpose MPLS
Labels.";
}
identity ipv4-explicit-null-label { /*** Identities related to MPLS/GMPLS ***/
base mpls-label-special-purpose-value;
description
"This identity represents the IPv4 Explicit NULL Label.";
reference "RFC3032: MPLS Label Stack Encoding. Section 2.1.";
}
identity router-alert-label { identity mpls-label-special-purpose-value {
base mpls-label-special-purpose-value; description
description "Base identity for deriving identities describing
"This identity represents the Router Alert Label."; special-purpose Multiprotocol Label Switching (MPLS) label
reference "RFC3032: MPLS Label Stack Encoding. Section 2.1."; values.";
} reference
"RFC7274: Allocating and Retiring Special-Purpose MPLS
Labels.";
}
identity ipv6-explicit-null-label { identity ipv4-explicit-null-label {
base mpls-label-special-purpose-value; base mpls-label-special-purpose-value;
description description
"This identity represents the IPv6 Explicit NULL Label."; "This identity represents the IPv4 Explicit NULL Label.";
reference "RFC3032: MPLS Label Stack Encoding. Section 2.1."; reference "RFC3032: MPLS Label Stack Encoding. Section 2.1.";
} }
identity implicit-null-label { identity router-alert-label {
base mpls-label-special-purpose-value; base mpls-label-special-purpose-value;
description description
"This identity represents the Implicit NULL Label."; "This identity represents the Router Alert Label.";
reference "RFC3032: MPLS Label Stack Encoding. Section 2.1."; reference "RFC3032: MPLS Label Stack Encoding. Section 2.1.";
} }
identity entropy-label-indicator { identity ipv6-explicit-null-label {
base mpls-label-special-purpose-value; base mpls-label-special-purpose-value;
description description
"This identity represents the Entropy Label Indicator."; "This identity represents the IPv6 Explicit NULL Label.";
reference reference "RFC3032: MPLS Label Stack Encoding. Section 2.1.";
"RFC6790: The Use of Entropy Labels in MPLS Forwarding. }
Sections 3 and 10.1.";
}
identity gal-label {
base mpls-label-special-purpose-value;
description
"This identity represents the Generic Associated Channel
Label (GAL).";
reference
"RFC5586: MPLS Generic Associated Channel.
Sections 4 and 10.";
}
identity oam-alert-label { identity implicit-null-label {
base mpls-label-special-purpose-value; base mpls-label-special-purpose-value;
description description
"This identity represents the OAM Alert Label."; "This identity represents the Implicit NULL Label.";
reference reference "RFC3032: MPLS Label Stack Encoding. Section 2.1.";
"RFC3429: Assignment of the 'OAM Alert Label' for }
Multiprotocol Label Switching Architecture (MPLS)
Operation and Maintenance (OAM) Functions.
Sections 3 and 6.";
}
identity extension-label { identity entropy-label-indicator {
base mpls-label-special-purpose-value; base mpls-label-special-purpose-value;
description description
"This identity represents the Extension Label."; "This identity represents the Entropy Label Indicator.";
reference reference
"RFC7274: Allocating and Retiring Special-Purpose MPLS "RFC6790: The Use of Entropy Labels in MPLS Forwarding.
Labels. Sections 3.1 and 5."; Sections 3 and 10.1.";
} }
/*** Collection of types related to routing ***/ identity gal-label {
base mpls-label-special-purpose-value;
description
"This identity represents the Generic Associated Channel
Label (GAL).";
reference
"RFC5586: MPLS Generic Associated Channel.
Sections 4 and 10.";
}
typedef router-id { identity oam-alert-label {
type yang:dotted-quad; base mpls-label-special-purpose-value;
description description
"A 32-bit number in the dotted quad format assigned to each "This identity represents the OAM Alert Label.";
router. This number uniquely identifies the router within reference
an Autonomous System."; "RFC3429: Assignment of the 'OAM Alert Label' for
} Multiprotocol Label Switching Architecture (MPLS)
Operation and Maintenance (OAM) Functions.
Sections 3 and 6.";
}
/*** Collection of types related to VPN ***/ identity extension-label {
base mpls-label-special-purpose-value;
description
"This identity represents the Extension Label.";
reference
"RFC7274: Allocating and Retiring Special-Purpose MPLS
Labels. Sections 3.1 and 5.";
}
typedef route-target { /*** Collection of types related to routing ***/
type string {
pattern
'(0:(6553[0-5]|655[0-2]\d|65[0-4]\d{2}|6[0-4]\d{3}|'
+ '[0-5]?\d{0,3}\d):(429496729[0-5]|42949672[0-8]\d|'
+ '4294967[01]\d{2}|429496[0-6]\d{3}|42949[0-5]\d{4}|'
+ '4294[0-8]\d{5}|429[0-3]\d{6}|42[0-8]\d{7}|4[01]\d{8}|'
+ '[0-3]?\d{0,8}\d))|'
+ '(1:(((\d|[1-9]\d|1\d{2}|2[0-4]\d|25[0-5])\.){3}(\d|[1-9]\d|'
+ '1\d{2}|2[0-4]\d|25[0-5])):(6553[0-5]|655[0-2]\d|'
+ '65[0-4]\d{2}|6[0-4]\d{3}|[0-5]?\d{0,3}\d))|'
+ '(2:(429496729[0-5]|42949672[0-8]\d|4294967[01]\d{2}|'
+ '429496[0-6]\d{3}|42949[0-5]\d{4}|4294[0-8]\d{5}|'
+ '429[0-3]\d{6}|42[0-8]\d{7}|4[01]\d{8}|[0-3]?\d{0,8}\d):'
+ '(6553[0-5]|655[0-2]\d|65[0-4]\d{2}|6[0-4]\d{3}|'
+ '[0-5]?\d{0,3}\d))';
}
description
"A route target is an 8-octet BGP extended community
initially identifying a set of sites in a BGP
VPN (RFC 4364). However, it has since taken on a more
general role in BGP route filtering.
A route target consists of three fields:
a 2-octet type field, an administrator field,
and an assigned number field.
According to the data formats for type 0, 1, and 2 defined
in RFC4360 and RFC5668, the encoding pattern is defined as:
0:2-octet-asn:4-octet-number typedef router-id {
1:4-octet-ipv4addr:2-octet-number type yang:dotted-quad;
2:4-octet-asn:2-octet-number. description
"A 32-bit number in the dotted quad format assigned to each
router. This number uniquely identifies the router within
an Autonomous System.";
}
Some valid examples are: 0:100:100, 1:1.1.1.1:100, and /*** Collection of types related to VPN ***/
2:1234567890:203.";
reference
"RFC4360: BGP Extended Communities Attribute.
RFC5668: 4-Octet AS Specific BGP Extended Community.";
}
typedef ipv6-route-target { typedef route-target {
type string { type string {
pattern pattern
'((:|[0-9a-fA-F]{0,4}):)([0-9a-fA-F]{0,4}:){0,5}' '(0:(6553[0-5]|655[0-2][0-9]|65[0-4][0-9]{2}|'
+ '((([0-9a-fA-F]{0,4}:)?(:|[0-9a-fA-F]{0,4}))|' + '6[0-4][0-9]{3}|'
+ '(((25[0-5]|2[0-4][0-9]|[01]?[0-9]?[0-9])\.){3}' + '[0-5]?[0-9]{0,3}[0-9]):(429496729[0-5]|'
+ '(25[0-5]|2[0-4][0-9]|[01]?[0-9]?[0-9])))' + '42949672[0-8][0-9]|'
+ ':' + '4294967[01][0-9]{2}|429496[0-6][0-9]{3}|'
+ '(6553[0-5]|655[0-2]\d|65[0-4]\d{2}|6[0-4]\d{3}|' + '42949[0-5][0-9]{4}|'
+ '[0-5]?\d{0,3}\d)'; + '4294[0-8][0-9]{5}|429[0-3][0-9]{6}|'
pattern '((([^:]+:){6}(([^:]+:[^:]+)|(.*\..*)))|' + '42[0-8][0-9]{7}|4[01][0-9]{8}|'
+ '((([^:]+:)*[^:]+)?::(([^:]+:)*[^:]+)?))' + '[0-3]?[0-9]{0,8}[0-9]))|'
+ ':' + '(1:((([0-9]|[1-9][0-9]|1[0-9]{2}|2[0-4][0-9]|'
+ '(6553[0-5]|655[0-2]\d|65[0-4]\d{2}|6[0-4]\d{3}|' + '25[0-5])\.){3}([0-9]|[1-9][0-9]|'
+ '[0-5]?\d{0,3}\d)'; + '1[0-9]{2}|2[0-4][0-9]|25[0-5])):(6553[0-5]|'
+ '655[0-2][0-9]|'
+ '65[0-4][0-9]{2}|6[0-4][0-9]{3}|'
+ '[0-5]?[0-9]{0,3}[0-9]))|'
+ '(2:(429496729[0-5]|42949672[0-8][0-9]|'
+ '4294967[01][0-9]{2}|'
+ '429496[0-6][0-9]{3}|42949[0-5][0-9]{4}|'
+ '4294[0-8][0-9]{5}|'
+ '429[0-3][0-9]{6}|42[0-8][0-9]{7}|4[01][0-9]{8}|'
+ '[0-3]?[0-9]{0,8}[0-9]):'
+ '(6553[0-5]|655[0-2][0-9]|65[0-4][0-9]{2}|'
+ '6[0-4][0-9]{3}|'
+ '[0-5]?[0-9]{0,3}[0-9]))|'
+ '(6(:[a-fA-F0-9]{2}){6})|'
+ '(([3-57-9a-fA-F]|[1-9a-fA-F][0-9a-fA-F]{1,3}):'
+ '[0-9a-fA-F]{1,12})';
}
description
"A route target is an 8-octet BGP extended community
initially identifying a set of sites in a BGP
VPN (RFC 4364). However, it has since taken on a more
general role in BGP route filtering.
A route target consists of two or three fields:
a 2-octet type field, an administrator field,
and, optionally, an assigned number field.
} According to the data formats for type 0, 1, 2, and 6
description defined in RFC4360, RFC5668, and RFC7432, the encoding
"An IPv6 route target is a 20-octet BGP IPv6 address pattern is defined as:
specific extended community serving the same function
as a standard 8-octet route target only allowing for
an IPv6 address as the global adminstrator. The format
is <ipv6-address:2-octet-number>.
Some valid examples are: 2001:DB8::1:6544 and 0:2-octet-asn:4-octet-number
2001:DB8::5eb1:791:6b37:17958"; 1:4-octet-ipv4addr:2-octet-number
reference 2:4-octet-asn:2-octet-number.
"RFC5701: IPv6 Address Specific BGP Extended Community 6:6-octet-mac-address.
Attribute";
}
typedef route-target-type { Additionally, a generic pattern is defined for future
type enumeration { route target types:
enum "import" {
value 0;
description
"The route target applies to route import.";
}
enum "export" {
value 1;
description
"The route target applies to route export.";
}
enum "both" {
value 2;
description
"The route target applies to both route import and
route export.";
}
}
description
"Indicates the role a route target takes
in route filtering.";
reference "RFC4364: BGP/MPLS IP Virtual Private Networks (VPNs).";
}
typedef route-distinguisher { 2-octet-other-hex-number:6-octet-hex-number
type string {
pattern
'(0:(6553[0-5]|655[0-2]\d|65[0-4]\d{2}|6[0-4]\d{3}|'
+ '[0-5]?\d{0,3}\d):(429496729[0-5]|42949672[0-8]\d|'
+ '4294967[01]\d{2}|429496[0-6]\d{3}|42949[0-5]\d{4}|'
+ '4294[0-8]\d{5}|429[0-3]\d{6}|42[0-8]\d{7}|4[01]\d{8}|'
+ '[0-3]?\d{0,8}\d))|'
+ '(1:(((\d|[1-9]\d|1\d{2}|2[0-4]\d|25[0-5])\.){3}(\d|[1-9]\d|'
+ '1\d{2}|2[0-4]\d|25[0-5])):(6553[0-5]|655[0-2]\d|'
+ '65[0-4]\d{2}|6[0-4]\d{3}|[0-5]?\d{0,3}\d))|'
+ '(2:(429496729[0-5]|42949672[0-8]\d|4294967[01]\d{2}|'
+ '429496[0-6]\d{3}|42949[0-5]\d{4}|4294[0-8]\d{5}|'
+ '429[0-3]\d{6}|42[0-8]\d{7}|4[01]\d{8}|[0-3]?\d{0,8}\d):'
+ '(6553[0-5]|655[0-2]\d|65[0-4]\d{2}|6[0-4]\d{3}|'
+ '[0-5]?\d{0,3}\d))|'
+ '(([3-9a-fA-F]|[1-9a-fA-F][\da-fA-F]{1,3}):'
+ '[\da-fA-F]{1,12})';
}
description
"A route distinguisher is an 8-octet value used to distinguish
routes from different BGP VPNs (RFC 4364). A route
distinguisher consists of three fields: A 2-octet type field,
an administrator field, and an assigned number field.
According to the data formats for type 0, 1, and 2 defined in
RFC4364, the encoding pattern is defined as:
0:2-octet-asn:4-octet-number Some valid examples are: 0:100:100, 1:1.1.1.1:100,
1:4-octet-ipv4addr:2-octet-number 2:1234567890:203 and 6:26:00:08:92:78:00";
2:4-octet-asn:2-octet-number.
2-octet-other-hex-number:6-octet-hex-number
Some valid examples are: 0:100:100, 1:1.1.1.1:100, and reference
2:1234567890:203."; "RFC4360: BGP Extended Communities Attribute.
reference "RFC4364: BGP/MPLS IP Virtual Private Networks (VPNs)."; RFC4364: BGP/MPLS IP Virtual Private Networks (VPNs)
} RFC5668: 4-Octet AS Specific BGP Extended Community.
RFC7432: BGP MPLS-Based Ethernet VPN";
}
typedef route-origin { typedef ipv6-route-target {
type string { type string {
pattern pattern
'(0:(6553[0-5]|655[0-2]\d|65[0-4]\d{2}|6[0-4]\d{3}|' '((:|[0-9a-fA-F]{0,4}):)([0-9a-fA-F]{0,4}:){0,5}'
+ '[0-5]?\d{0,3}\d):(429496729[0-5]|42949672[0-8]\d|' + '((([0-9a-fA-F]{0,4}:)?(:|[0-9a-fA-F]{0,4}))|'
+ '4294967[01]\d{2}|429496[0-6]\d{3}|42949[0-5]\d{4}|' + '(((25[0-5]|2[0-4][0-9]|[01]?[0-9]?[0-9])\.){3}'
+ '4294[0-8]\d{5}|429[0-3]\d{6}|42[0-8]\d{7}|4[01]\d{8}|' + '(25[0-5]|2[0-4][0-9]|[01]?[0-9]?[0-9])))'
+ '[0-3]?\d{0,8}\d))|' + ':'
+ '(1:(((\d|[1-9]\d|1\d{2}|2[0-4]\d|25[0-5])\.){3}(\d|[1-9]\d|' + '(6553[0-5]|655[0-2][0-9]|65[0-4][0-9]{2}|'
+ '1\d{2}|2[0-4]\d|25[0-5])):(6553[0-5]|655[0-2]\d|' + '6[0-4][0-9]{3}|'
+ '65[0-4]\d{2}|6[0-4]\d{3}|[0-5]?\d{0,3}\d))|' + '[0-5]?[0-9]{0,3}[0-9])';
+ '(2:(429496729[0-5]|42949672[0-8]\d|4294967[01]\d{2}|' pattern '((([^:]+:){6}(([^:]+:[^:]+)|(.*\..*)))|'
+ '429496[0-6]\d{3}|42949[0-5]\d{4}|4294[0-8]\d{5}|' + '((([^:]+:)*[^:]+)?::(([^:]+:)*[^:]+)?))'
+ '429[0-3]\d{6}|42[0-8]\d{7}|4[01]\d{8}|[0-3]?\d{0,8}\d):' + ':'
+ '(6553[0-5]|655[0-2]\d|65[0-4]\d{2}|6[0-4]\d{3}|' + '(6553[0-5]|655[0-2][0-9]|65[0-4][0-9]{2}|'
+ '[0-5]?\d{0,3}\d))|' + '6[0-4][0-9]{3}|'
+ '(([3-9a-fA-F]|[1-9a-fA-F][\da-fA-F]{1,3}):' + '[0-5]?[0-9]{0,3}[0-9])';
+ '[\da-fA-F]{1,12})'; }
} description
description "An IPv6 route target is a 20-octet BGP IPv6 address
"A route origin is an 8-octet BGP extended community specific extended community serving the same function
identifying the set of sites where the BGP route as a standard 8-octet route target only allowing for
originated(RFC 4364). A route origin consists of three an IPv6 address as the global adminstrator. The format
fields: A 2-octet type field, an administrator field, is <ipv6-address:2-octet-number>.
and an assigned number field. According to the data
formats for type 0, 1, and 2 defined in RFC4364,
the encoding pattern is defined as:
0:2-octet-asn:4-octet-number Some valid examples are: 2001:DB8::1:6544 and
1:4-octet-ipv4addr:2-octet-number 2001:DB8::5eb1:791:6b37:17958";
2:4-octet-asn:2-octet-number. reference
2-octet-other-hex-number:6-octet-hex-number "RFC5701: IPv6 Address Specific BGP Extended Community
Attribute";
}
Some valid examples are: 0:100:100, 1:1.1.1.1:100, and typedef route-target-type {
2:1234567890:203."; type enumeration {
reference enum "import" {
"RFC4360: BGP Extended Communities Attribute. value 0;
RFC4369: BGP/MPLS IP Virtual Private Networks (VPNs) description
RFC5668: 4-Octet AS Specific BGP Extended Community."; "The route target applies to route import.";
} }
enum "export" {
value 1;
description
"The route target applies to route export.";
}
enum "both" {
value 2;
description
"The route target applies to both route import and
route export.";
}
}
description
"Indicates the role a route target takes
in route filtering.";
reference "RFC4364: BGP/MPLS IP Virtual Private Networks
(VPNs).";
}
typedef ipv6-route-origin { typedef route-distinguisher {
type string { type string {
pattern pattern
'((:|[0-9a-fA-F]{0,4}):)([0-9a-fA-F]{0,4}:){0,5}' '(0:(6553[0-5]|655[0-2][0-9]|65[0-4][0-9]{2}|'
+ '((([0-9a-fA-F]{0,4}:)?(:|[0-9a-fA-F]{0,4}))|' + '6[0-4][0-9]{3}|'
+ '(((25[0-5]|2[0-4][0-9]|[01]?[0-9]?[0-9])\.){3}' + '[0-5]?[0-9]{0,3}[0-9]):(429496729[0-5]|'
+ '(25[0-5]|2[0-4][0-9]|[01]?[0-9]?[0-9])))' + '42949672[0-8][0-9]|'
+ ':' + '4294967[01][0-9]{2}|429496[0-6][0-9]{3}|'
+ '(6553[0-5]|655[0-2]\d|65[0-4]\d{2}|6[0-4]\d{3}|' + '42949[0-5][0-9]{4}|'
+ '[0-5]?\d{0,3}\d)'; + '4294[0-8][0-9]{5}|429[0-3][0-9]{6}|'
pattern '((([^:]+:){6}(([^:]+:[^:]+)|(.*\..*)))|' + '42[0-8][0-9]{7}|4[01][0-9]{8}|'
+ '((([^:]+:)*[^:]+)?::(([^:]+:)*[^:]+)?))' + '[0-3]?[0-9]{0,8}[0-9]))|'
+ ':' + '(1:((([0-9]|[1-9][0-9]|1[0-9]{2}|2[0-4][0-9]|'
+ '(6553[0-5]|655[0-2]\d|65[0-4]\d{2}|6[0-4]\d{3}|' + '25[0-5])\.){3}([0-9]|[1-9][0-9]|'
+ '[0-5]?\d{0,3}\d)'; + '1[0-9]{2}|2[0-4][0-9]|25[0-5])):(6553[0-5]|'
} + '655[0-2][0-9]|'
description + '65[0-4][0-9]{2}|6[0-4][0-9]{3}|'
"An IPv6 route origin is a 20-octet BGP IPv6 address + '[0-5]?[0-9]{0,3}[0-9]))|'
specific extended community serving the same function + '(2:(429496729[0-5]|42949672[0-8][0-9]|'
as a standard 8-octet route only only allowing for + '4294967[01][0-9]{2}|'
an IPv6 address as the global adminstrator. The format + '429496[0-6][0-9]{3}|42949[0-5][0-9]{4}|'
is <ipv6-address:2-octet-number>. + '4294[0-8][0-9]{5}|'
+ '429[0-3][0-9]{6}|42[0-8][0-9]{7}|4[01][0-9]{8}|'
+ '[0-3]?[0-9]{0,8}[0-9]):'
+ '(6553[0-5]|655[0-2][0-9]|65[0-4][0-9]{2}|'
+ '6[0-4][0-9]{3}|'
+ '[0-5]?[0-9]{0,3}[0-9]))|'
+ '(6(:[a-fA-F0-9]{2}){6})|'
+ '(([3-57-9a-fA-F]|[1-9a-fA-F][0-9a-fA-F]{1,3}):'
+ '[0-9a-fA-F]{1,12})';
}
description
"A route distinguisher is an 8-octet value used to
distinguish routes from different BGP VPNs (RFC 4364).
As per RFC 4360, a route distinguisher will have the same
format as a route target and will consist of two or three
fields including a 2-octet type field, an administrator
field, and, optionally, an assigned number field.
Some valid examples are: 2001:DB8::1:6544 and According to the data formats for type 0, 1, 2, and 6
2001:DB8::5eb1:791:6b37:17958"; defined in RFC4360, RFC5668, and RFC7432, the encoding
reference pattern is defined as:
"RFC5701: IPv6 Address Specific BGP Extended Community
Attribute";
}
/*** Collection of types common to multicast ***/ 0:2-octet-asn:4-octet-number
1:4-octet-ipv4addr:2-octet-number
2:4-octet-asn:2-octet-number.
6:6-octet-mac-address.
typedef ipv4-multicast-group-address { Additionally, a generic pattern is defined for future
type inet:ipv4-address { route discriminator types:
pattern '(2((2[4-9])|(3[0-9]))\.).*';
}
description
"This type represents an IPv4 multicast group address,
which is in the range from 224.0.0.0 to 239.255.255.255.";
reference "RFC1112: Host Extensions for IP Multicasting.";
}
typedef ipv6-multicast-group-address { 2-octet-other-hex-number:6-octet-hex-number
type inet:ipv6-address {
pattern
'(([fF]{2}[0-9a-fA-F]{2}):).*';
}
description
"This type represents an IPv6 multicast group address,
which is in the range of FF00::/8.";
reference
"RFC4291: IP Version 6 Addressing Architecture. Sec 2.7.
RFC7346: IPv6 Multicast Address Scopes.";
}
typedef ip-multicast-group-address { Some valid examples are: 0:100:100, 1:1.1.1.1:100,
type union { 2:1234567890:203 and 6:26:00:08:92:78:00";
type ipv4-multicast-group-address; reference
type ipv6-multicast-group-address; "RFC4360: BGP Extended Communities Attribute.
} RFC4364: BGP/MPLS IP Virtual Private Networks (VPNs)
description RFC5668: 4-Octet AS Specific BGP Extended Community.
"This type represents a version-neutral IP multicast group RFC7432: BGP MPLS-Based Ethernet VPN";
address. The format of the textual representation implies }
the IP version.";
}
typedef ipv4-multicast-source-address { typedef route-origin {
type union { type string {
type enumeration { pattern
enum "*" { '(0:(6553[0-5]|655[0-2][0-9]|65[0-4][0-9]{2}|'
description + '6[0-4][0-9]{3}|'
"Any source address."; + '[0-5]?[0-9]{0,3}[0-9]):(429496729[0-5]|'
} + '42949672[0-8][0-9]|'
} + '4294967[01][0-9]{2}|429496[0-6][0-9]{3}|'
type inet:ipv4-address; + '42949[0-5][0-9]{4}|'
} + '4294[0-8][0-9]{5}|429[0-3][0-9]{6}|'
description + '42[0-8][0-9]{7}|4[01][0-9]{8}|'
"Multicast source IPv4 address type."; + '[0-3]?[0-9]{0,8}[0-9]))|'
} + '(1:((([0-9]|[1-9][0-9]|1[0-9]{2}|2[0-4][0-9]|'
+ '25[0-5])\.){3}([0-9]|[1-9][0-9]|'
+ '1[0-9]{2}|2[0-4][0-9]|25[0-5])):(6553[0-5]|'
+ '655[0-2][0-9]|'
+ '65[0-4][0-9]{2}|6[0-4][0-9]{3}|'
+ '[0-5]?[0-9]{0,3}[0-9]))|'
+ '(2:(429496729[0-5]|42949672[0-8][0-9]|'
+ '4294967[01][0-9]{2}|'
+ '429496[0-6][0-9]{3}|42949[0-5][0-9]{4}|'
+ '4294[0-8][0-9]{5}|'
+ '429[0-3][0-9]{6}|42[0-8][0-9]{7}|4[01][0-9]{8}|'
+ '[0-3]?[0-9]{0,8}[0-9]):'
+ '(6553[0-5]|655[0-2][0-9]|65[0-4][0-9]{2}|'
+ '6[0-4][0-9]{3}|'
+ '[0-5]?[0-9]{0,3}[0-9]))|'
+ '(6:[a-fA-F0-9]{1,2}){6}|'
+ '(([3-57-9a-fA-F]|[1-9a-fA-F][0-9a-fA-F]{1,3}):'
+ '[0-9a-fA-F]{1,12})';
}
description
"A route origin is an 8-octet BGP extended community
identifying the set of sites where the BGP route
originated (RFC 4364). A route target consists of two
or three fields: a 2-octet type field, an administrator
field, and, optionally, an assigned number field.
typedef ipv6-multicast-source-address { According to the data formats for type 0, 1, 2, and 6
type union { defined in RFC4360, RFC5668, and RFC7432, the encoding
type enumeration { pattern is defined as:
enum "*" {
description
"Any source address.";
}
}
type inet:ipv6-address;
}
description
"Multicast source IPv6 address type.";
}
/*** Collection of types common to protocols ***/ 0:2-octet-asn:4-octet-number
1:4-octet-ipv4addr:2-octet-number
2:4-octet-asn:2-octet-number.
6:6-octet-mac-address.
typedef bandwidth-ieee-float32 { Additionally, a generic pattern is defined for future
type string { route origin types:
pattern
'0[xX](0((\.0?)?[pP](\+)?0?|(\.0?))|'
+ '1(\.([\da-fA-F]{0,5}[02468aAcCeE]?)?)?[pP](\+)?(12[0-7]|'
+ '1[01]\d|0?\d?\d)?)';
}
description
"Bandwidth in IEEE 754 floating point 32-bit binary format:
(-1)**(S) * 2**(Exponent-127) * (1 + Fraction),
where Exponent uses 8 bits, and Fraction uses 23 bits.
The units are octets per second.
The encoding format is the external hexadecimal-significant
character sequences specified in IEEE 754 and C99. The
format is restricted to be normalized, non-negative, and
non-fraction: 0x1.hhhhhhp{+}d or 0X1.HHHHHHP{+}D
where 'h' and 'H' are hexadecimal digits, 'd' and 'D' are
integers in the range of [0..127].
When six hexadecimal digits are used for 'hhhhhh' or 'HHHHHH',
the least significant digit must be an even number.
'x' and 'X' indicate hexadecimal; 'p' and 'P' indicate power
of two. Some examples are: 0x0p0, 0x1p10, and
0x1.abcde2p+20";
reference
"IEEE Std 754-2008: IEEE Standard for Floating-Point
Arithmetic.";
} 2-octet-other-hex-number:6-octet-hex-number
typedef link-access-type { Some valid examples are: 0:100:100, 1:1.1.1.1:100,
type enumeration { 2:1234567890:203 and 6:26:00:08:92:78:00";
enum "broadcast" { reference
description "RFC4360: BGP Extended Communities Attribute.
"Specify broadcast multi-access network."; RFC4364: BGP/MPLS IP Virtual Private Networks (VPNs)
} RFC5668: 4-Octet AS Specific BGP Extended Community.
enum "non-broadcast-multiaccess" { RFC7432: BGP MPLS-Based Ethernet VPN";
description }
"Specify Non-Broadcast Multi-Access (NBMA) network.";
}
enum "point-to-multipoint" {
description
"Specify point-to-multipoint network.";
}
enum "point-to-point" {
description
"Specify point-to-point network.";
}
}
description
"Link access type.";
}
typedef timer-multiplier { typedef ipv6-route-origin {
type uint8; type string {
description pattern
"The number of timer value intervals that should be '((:|[0-9a-fA-F]{0,4}):)([0-9a-fA-F]{0,4}:){0,5}'
interpreted as a failure."; + '((([0-9a-fA-F]{0,4}:)?(:|[0-9a-fA-F]{0,4}))|'
} + '(((25[0-5]|2[0-4][0-9]|[01]?[0-9]?[0-9])\.){3}'
+ '(25[0-5]|2[0-4][0-9]|[01]?[0-9]?[0-9])))'
+ ':'
+ '(6553[0-5]|655[0-2][0-9]|65[0-4][0-9]{2}|'
+ '6[0-4][0-9]{3}|'
+ '[0-5]?[0-9]{0,3}[0-9])';
pattern '((([^:]+:){6}(([^:]+:[^:]+)|(.*\..*)))|'
+ '((([^:]+:)*[^:]+)?::(([^:]+:)*[^:]+)?))'
+ ':'
+ '(6553[0-5]|655[0-2][0-9]|65[0-4][0-9]{2}|'
+ '6[0-4][0-9]{3}|'
+ '[0-5]?[0-9]{0,3}[0-9])';
}
description
"An IPv6 route origin is a 20-octet BGP IPv6 address
specific extended community serving the same function
as a standard 8-octet route only only allowing for
an IPv6 address as the global adminstrator. The format
is <ipv6-address:2-octet-number>.
typedef timer-value-seconds16 { Some valid examples are: 2001:DB8::1:6544 and
type union { 2001:DB8::5eb1:791:6b37:17958";
type uint16 { reference
range "1..65535"; "RFC5701: IPv6 Address Specific BGP Extended Community
} Attribute";
type enumeration { }
enum "infinity" {
description
"The timer is set to infinity.";
}
enum "not-set" {
description
"The timer is not set.";
}
}
}
units "seconds";
description
"Timer value type, in seconds (16-bit range).";
}
typedef timer-value-seconds32 { /*** Collection of types common to multicast ***/
type union {
type uint32 {
range "1..4294967295";
}
type enumeration {
enum "infinity" {
description
"The timer is set to infinity.";
}
enum "not-set" {
description
"The timer is not set.";
}
}
}
units "seconds";
description
"Timer value type, in seconds (32-bit range).";
}
typedef timer-value-milliseconds { typedef ipv4-multicast-group-address {
type union { type inet:ipv4-address {
type uint32 { pattern '(2((2[4-9])|(3[0-9]))\.).*';
range "1..4294967295"; }
} description
type enumeration { "This type represents an IPv4 multicast group address,
enum "infinity" { which is in the range from 224.0.0.0 to 239.255.255.255.";
description reference "RFC1112: Host Extensions for IP Multicasting.";
"The timer is set to infinity."; }
}
enum "not-set" {
description
"The timer is not set.";
}
}
}
units "milliseconds";
description
"Timer value type, in milliseconds.";
}
typedef percentage { typedef ipv6-multicast-group-address {
type uint8 { type inet:ipv6-address {
range "0..100"; pattern
} '(([fF]{2}[0-9a-fA-F]{2}):).*';
description }
"Integer indicating a percentage value"; description
} "This type represents an IPv6 multicast group address,
which is in the range of FF00::/8.";
typedef timeticks64 { reference
type uint64; "RFC4291: IP Version 6 Addressing Architecture. Sec 2.7.
description RFC7346: IPv6 Multicast Address Scopes.";
"This type is based on the timeticks type defined in }
RFC 6991, but with 64-bit width. It represents the time,
modulo 2^64, in hundredths of a second between two epochs.";
reference "RFC 6991 - Common YANG Data Types";
}
typedef uint24 { typedef ip-multicast-group-address {
type uint32 { type union {
range "0 .. 16777215"; type ipv4-multicast-group-address;
} type ipv6-multicast-group-address;
description }
"24-bit unsigned integer"; description
} "This type represents a version-neutral IP multicast group
address. The format of the textual representation implies
the IP version.";
}
/*** Collection of types related to MPLS/GMPLS ***/ typedef ipv4-multicast-source-address {
type union {
type enumeration {
enum "*" {
description
"Any source address.";
}
}
type inet:ipv4-address;
}
description
"Multicast source IPv4 address type.";
}
typedef generalized-label { typedef ipv6-multicast-source-address {
type binary; type union {
description type enumeration {
"Generalized label. Nodes sending and receiving the enum "*" {
Generalized Label are aware of the link-specific description
label context and type."; "Any source address.";
reference "RFC3471: Section 3.2"; }
} }
type inet:ipv6-address;
}
description
"Multicast source IPv6 address type.";
}
typedef mpls-label-special-purpose { /*** Collection of types common to protocols ***/
type identityref {
base mpls-label-special-purpose-value;
}
description
"This type represents the special-purpose Multiprotocol Label
Switching (MPLS) label values.";
reference
"RFC3032: MPLS Label Stack Encoding.
RFC7274: Allocating and Retiring Special-Purpose MPLS
Labels.";
}
typedef mpls-label-general-use {
type uint32 {
range "16..1048575";
}
description
"The 20-bit label values in an MPLS label stack entry,
specified in RFC3032. This label value does not include
the encodings of Traffic Class and TTL (time to live).
The label range specified by this type is for general use,
with special-purpose MPLS label values excluded.";
reference "RFC3032: MPLS Label Stack Encoding.";
}
typedef mpls-label { typedef bandwidth-ieee-float32 {
type union { type string {
type mpls-label-special-purpose; pattern
type mpls-label-general-use; '0[xX](0((\.0?)?[pP](\+)?0?|(\.0?))|'
} + '1(\.([0-9a-fA-F]{0,5}[02468aAcCeE]?)?)?[pP](\+)?(12[0-7]|'
description + '1[01][0-9]|0?[0-9]?[0-9])?)';
"The 20-bit label values in an MPLS label stack entry, }
specified in RFC3032. This label value does not include description
the encodings of Traffic Class and TTL (time to live)."; "Bandwidth in IEEE 754 floating point 32-bit binary format:
reference "RFC3032: MPLS Label Stack Encoding."; (-1)**(S) * 2**(Exponent-127) * (1 + Fraction),
} where Exponent uses 8 bits, and Fraction uses 23 bits.
The units are octets per second.
The encoding format is the external hexadecimal-significant
character sequences specified in IEEE 754 and C99. The
format is restricted to be normalized, non-negative, and
non-fraction: 0x1.hhhhhhp{+}d or 0X1.HHHHHHP{+}D
where 'h' and 'H' are hexadecimal digits, 'd' and 'D' are
integers in the range of [0..127].
When six hexadecimal digits are used for 'hhhhhh' or
'HHHHHH', the least significant digit must be an even
number. 'x' and 'X' indicate hexadecimal; 'p' and 'P'
indicate power of two. Some examples are: 0x0p0, 0x1p10, and
0x1.abcde2p+20";
reference
"IEEE Std 754-2008: IEEE Standard for Floating-Point
Arithmetic.";
}
/*** Groupings **/ typedef link-access-type {
type enumeration {
enum "broadcast" {
description
"Specify broadcast multi-access network.";
}
enum "non-broadcast-multiaccess" {
description
"Specify Non-Broadcast Multi-Access (NBMA) network.";
}
enum "point-to-multipoint" {
description
"Specify point-to-multipoint network.";
}
enum "point-to-point" {
description
"Specify point-to-point network.";
}
}
description
"Link access type.";
}
typedef timer-multiplier {
type uint8;
description
"The number of timer value intervals that should be
interpreted as a failure.";
}
grouping mpls-label-stack { typedef timer-value-seconds16 {
description type union {
"A grouping that specifies an MPLS label stack."; type uint16 {
container mpls-label-stack { range "1..65535";
description }
"Container for a list of MPLS label stack entries."; type enumeration {
list entry { enum "infinity" {
key "id"; description
description "The timer is set to infinity.";
"List of MPLS label stack entries."; }
leaf id { enum "not-set" {
type uint8; description
description "The timer is not set.";
"Identifies the sequence of an MPLS label stack entries. }
An entry with smaller ID value is precedes an entry in }
the label stack with a smaller ID."; }
} units "seconds";
leaf label { description
type rt-types:mpls-label; "Timer value type, in seconds (16-bit range).";
description }
"Label value.";
} typedef timer-value-seconds32 {
leaf ttl { type union {
type uint8; type uint32 {
description range "1..4294967295";
"Time to Live (TTL)."; }
reference "RFC3032: MPLS Label Stack Encoding."; type enumeration {
} enum "infinity" {
leaf traffic-class { description
type uint8 { "The timer is set to infinity.";
range "0..7"; }
} enum "not-set" {
description description
"Traffic Class (TC)."; "The timer is not set.";
reference }
"RFC5462: Multiprotocol Label Switching (MPLS) Label }
Stack Entry: 'EXP' Field Renamed to 'Traffic Class' }
Field."; units "seconds";
} description
} "Timer value type, in seconds (32-bit range).";
} }
} typedef timer-value-milliseconds {
type union {
type uint32 {
range "1..4294967295";
}
type enumeration {
enum "infinity" {
description
"The timer is set to infinity.";
}
enum "not-set" {
description
"The timer is not set.";
}
}
}
units "milliseconds";
description
"Timer value type, in milliseconds.";
}
grouping vpn-route-targets { typedef percentage {
description type uint8 {
"A grouping that specifies Route Target import-export rules range "0..100";
used in the BGP enabled Virtual Private Networks (VPNs)."; }
reference description
"RFC4364: BGP/MPLS IP Virtual Private Networks (VPNs). "Integer indicating a percentage value";
RFC4664: Framework for Layer 2 Virtual Private Networks }
(L2VPNs)";
list vpn-target {
key "route-target";
description
"List of Route Targets.";
leaf route-target {
type rt-types:route-target;
description
"Route Target value";
}
leaf route-target-type {
type rt-types:route-target-type;
mandatory true;
description
"Import/export type of the Route Target.";
}
}
}
grouping geo-coordinates {
description
"Standard grouping for Geo Coordinates
in routing information";
container geo-coordinates {
description
"Container for Geo Coordinates";
leaf flags {
type bits {
bit U {
description
"If the U-bit is set, it indicates that
the location-uncertainty is specified, If the
U-bit is clear, it indicates the
location-uncertainty is unspecified.";
}
bit N {
description
"If the N-bit is set, it indicates the
latitude is north relative to the Equator. If
the N-bit is clear, it indicates the latitude
is south of the Equator.";
}
bit E {
description
"If the E-bit is set, it indicates the
longitute is east of the Prime Meridian. If
the E-bit is clear, it indicates the longitude
is west of the Prime Meridian.";
}
bit A {
description
"If the A-bit is set, it indicates the
altitude is specified. If the A-bit is clear,
it indicates the altitude is unspecified.";
}
bit M {
description
"If the M-bit is set, it indicates the
altitude is specified in meters. If the M-bit
is clear, it indicates the altitude is
specified in centimeters.";
}
bit R {
description
"If the R-bit is set, it indicates the
radius is specified and the encoding is for a
circular area. If the R-bit is clear, it
indicates the radius is unspecified and the
encoding is for a single point.";
}
bit K {
description
"If the R-bit is set, it indicates the
radius is specified in kilometers. If the
R-bit is clear, it indicates the radius is
specified in meters.";
}
}
description
"Bits defining granularity or semantics
of Geo Coordinates fields.";
}
leaf location-uncertainty {
type uint16;
description
"Number of centimeters of uncertainty for
the location.";
}
leaf latitude-degrees {
type uint8 {
range "0 .. 90";
}
description
"Latitude degrees north or south of the
Equator (northern or southern hemisphere,
respectively).";
}
leaf latitude-milliseconds {
type uint24 {
range "0 .. 3599999";
}
description
"Latitude millisecond granularity (less
than 60 minutes or a single degree).";
}
leaf longitude-degrees {
type uint8 {
range "0 .. 180";
}
description
"Longitude degrees east or westof the
Prime Meridian (eastern or western hemisphere,
respectively).";
}
leaf longitude-milliseconds {
type uint24 {
range "0 .. 3599999";
}
description
"Longitude millisecond granularity (less
than 60 minutes or a single degree).";
}
leaf altitude {
type int32;
description
"Height relative to sea level in
centimeters or meters. A negative height
indicates that the location is below sea
level.";
}
leaf radius {
type uint16;
description
"Radius of a circle centered at the
specified coordinates. The radius is specified
in meters unless the K-bit is specified
indicating specification in kilometers. If the
radius is specified, the geo-coordinates specify
the entire area of the circle defined by the
radius and center point.";
}
}
}
}
<CODE ENDS> typedef timeticks64 {
type uint64;
description
"This type is based on the timeticks type defined in
RFC 6991, but with 64-bit width. It represents the time,
modulo 2^64, in hundredths of a second between two epochs.";
reference "RFC 6991 - Common YANG Data Types";
}
typedef uint24 {
type uint32 {
range "0 .. 16777215";
}
description
"24-bit unsigned integer";
}
/*** Collection of types related to MPLS/GMPLS ***/
typedef generalized-label {
type binary;
description
"Generalized label. Nodes sending and receiving the
Generalized Label are aware of the link-specific
label context and type.";
reference "RFC3471: Section 3.2";
}
typedef mpls-label-special-purpose {
type identityref {
base mpls-label-special-purpose-value;
}
description
"This type represents the special-purpose Multiprotocol Label
Switching (MPLS) label values.";
reference
"RFC3032: MPLS Label Stack Encoding.
RFC7274: Allocating and Retiring Special-Purpose MPLS
Labels.";
}
typedef mpls-label-general-use {
type uint32 {
range "16..1048575";
}
description
"The 20-bit label values in an MPLS label stack entry,
specified in RFC3032. This label value does not include
the encodings of Traffic Class and TTL (time to live).
The label range specified by this type is for general use,
with special-purpose MPLS label values excluded.";
reference "RFC3032: MPLS Label Stack Encoding.";
}
typedef mpls-label {
type union {
type mpls-label-special-purpose;
type mpls-label-general-use;
}
description
"The 20-bit label values in an MPLS label stack entry,
specified in RFC3032. This label value does not include
the encodings of Traffic Class and TTL (time to live).";
reference "RFC3032: MPLS Label Stack Encoding.";
}
/*** Groupings **/
grouping mpls-label-stack {
description
"A grouping that specifies an MPLS label stack. List
entries are ordered with the first entry being the
top of stack, the next entry being the next entry
on the stack, and so on.";
container mpls-label-stack {
description
"Container for a list of MPLS label stack entries.";
list entry {
key "id";
description
"List of MPLS label stack entries.";
leaf id {
type uint8;
description
"Identifies the entry in a sequence of an MPLS label
stack entries. An entry with smaller ID value is
precedes an entry in the label stack with a smaller
ID. The value of this id has no semantic meaning other
than ordering and referencing the entry.";
}
leaf label {
type rt-types:mpls-label;
description
"Label value.";
}
leaf ttl {
type uint8;
description
"Time to Live (TTL).";
reference "RFC3032: MPLS Label Stack Encoding.";
}
leaf traffic-class {
type uint8 {
range "0..7";
}
description
"Traffic Class (TC).";
reference
"RFC5462: Multiprotocol Label Switching (MPLS) Label
Stack Entry: 'EXP' Field Renamed to 'Traffic Class'
Field.";
}
}
}
}
grouping vpn-route-targets {
description
"A grouping that specifies Route Target import-export rules
used in the BGP enabled Virtual Private Networks (VPNs).";
reference
"RFC4364: BGP/MPLS IP Virtual Private Networks (VPNs).
RFC4664: Framework for Layer 2 Virtual Private Networks
(L2VPNs)";
list vpn-target {
key "route-target";
description
"List of Route Targets.";
leaf route-target {
type rt-types:route-target;
description
"Route Target value";
}
leaf route-target-type {
type rt-types:route-target-type;
mandatory true;
description
"Import/export type of the Route Target.";
}
}
}
}
<CODE ENDS>
4. IANA Routing Types YANG Module 4. IANA Routing Types YANG Module
<CODE BEGINS> file "iana-routing-types@2017-06-29.yang" <CODE BEGINS> file "iana-routing-types@2017-06-29.yang"
module iana-routing-types { module iana-routing-types {
namespace "urn:ietf:params:xml:ns:yang:iana-routing-types"; namespace "urn:ietf:params:xml:ns:yang:iana-routing-types";
prefix iana-rt-types; prefix iana-rt-types;
organization organization
"IANA"; "IANA";
skipping to change at page 37, line 21 skipping to change at page 36, line 21
"IANA Subsequent Address Family Identities (SAFI) "IANA Subsequent Address Family Identities (SAFI)
Parameters Registry", <https://www.iana.org/assignments/ Parameters Registry", <https://www.iana.org/assignments/
safi-namespace/safi-namespace.xhtml#safi-namespace-2>. safi-namespace/safi-namespace.xhtml#safi-namespace-2>.
8.2. Informative References 8.2. Informative References
[IEEE754] IEEE, "IEEE Standard for Floating-Point Arithmetic", IEEE [IEEE754] IEEE, "IEEE Standard for Floating-Point Arithmetic", IEEE
Std 754-2008, August 2008. Std 754-2008, August 2008.
[I-D.ietf-bfd-yang] [I-D.ietf-bfd-yang]
Rahman, R., Zheng, L., Networks, J., Jethanandani, M., and Rahman, R., Zheng, L., Jethanandani, M., Networks, J., and
G. Mirsky, "Yang Data Model for Bidirectional Forwarding G. Mirsky, "YANG Data Model for Bidirectional Forwarding
Detection (BFD)", draft-ietf-bfd-yang-05 (work in Detection (BFD)", draft-ietf-bfd-yang-06 (work in
progress), March 2017. progress), June 2017.
[I-D.ietf-idr-bgp-model] [I-D.ietf-idr-bgp-model]
Shaikh, A., Shakir, R., Patel, K., Hares, S., D'Souza, K., Shaikh, A., Shakir, R., Patel, K., Hares, S., D'Souza, K.,
Bansal, D., Clemm, A., Zhdankin, A., Jethanandani, M., and Bansal, D., Clemm, A., Zhdankin, A., Jethanandani, M., and
X. Liu, "BGP Model for Service Provider Networks", draft- X. Liu, "BGP Model for Service Provider Networks", draft-
ietf-idr-bgp-model-02 (work in progress), July 2016. ietf-idr-bgp-model-02 (work in progress), July 2016.
[I-D.ietf-ospf-yang] [I-D.ietf-ospf-yang]
Yeung, D., Qu, Y., Zhang, Z., Chen, I., and A. Lindem, Yeung, D., Qu, Y., Zhang, Z., Chen, I., and A. Lindem,
"Yang Data Model for OSPF Protocol", draft-ietf-ospf- "Yang Data Model for OSPF Protocol", draft-ietf-ospf-
yang-07 (work in progress), March 2017. yang-08 (work in progress), July 2017.
[I-D.ietf-pim-yang] [I-D.ietf-pim-yang]
Liu, X., McAllister, P., Peter, A., Sivakumar, M., Liu, Liu, X., McAllister, P., Peter, A., Sivakumar, M., Liu,
Y., and f. hu, "A YANG data model for Protocol-Independent Y., and f. hu, "A YANG data model for Protocol-Independent
Multicast (PIM)", draft-ietf-pim-yang-08 (work in Multicast (PIM)", draft-ietf-pim-yang-08 (work in
progress), April 2017. progress), April 2017.
[I-D.ietf-teas-yang-rsvp] [I-D.ietf-teas-yang-rsvp]
Beeram, V., Saad, T., Gandhi, R., Liu, X., Bryskin, I., Beeram, V., Saad, T., Gandhi, R., Liu, X., Bryskin, I.,
and H. Shah, "A YANG Data Model for Resource Reservation and H. Shah, "A YANG Data Model for Resource Reservation
Protocol (RSVP)", draft-ietf-teas-yang-rsvp-07 (work in Protocol (RSVP)", draft-ietf-teas-yang-rsvp-07 (work in
progress), March 2017. progress), March 2017.
[I-D.ietf-teas-yang-te] [I-D.ietf-teas-yang-te]
Saad, T., Gandhi, R., Liu, X., Beeram, V., Shah, H., and Saad, T., Gandhi, R., Liu, X., Beeram, V., Shah, H., and
I. Bryskin, "A YANG Data Model for Traffic Engineering I. Bryskin, "A YANG Data Model for Traffic Engineering
Tunnels and Interfaces", draft-ietf-teas-yang-te-06 (work Tunnels and Interfaces", draft-ietf-teas-yang-te-08 (work
in progress), March 2017. in progress), July 2017.
[I-D.ietf-bess-l2vpn-yang] [I-D.ietf-bess-l2vpn-yang]
Shah, H., Brissette, P., Chen, I., Hussain, I., Wen, B., Shah, H., Brissette, P., Chen, I., Hussain, I., Wen, B.,
and K. Tiruveedhula, "YANG Data Model for MPLS-based and K. Tiruveedhula, "YANG Data Model for MPLS-based
L2VPN", draft-ietf-bess-l2vpn-yang-05 (work in progress), L2VPN", draft-ietf-bess-l2vpn-yang-06 (work in progress),
March 2017. June 2017.
[I-D.ietf-bess-l3vpn-yang] [I-D.ietf-bess-l3vpn-yang]
Jain, D., Patel, K., Brissette, P., Li, Z., Zhuang, S., Jain, D., Patel, K., Brissette, P., Li, Z., Zhuang, S.,
Liu, X., Haas, J., Esale, S., and B. Wen, "Yang Data Model Liu, X., Haas, J., Esale, S., and B. Wen, "Yang Data Model
for BGP/MPLS L3 VPNs", draft-ietf-bess-l3vpn-yang-01 (work for BGP/MPLS L3 VPNs", draft-ietf-bess-l3vpn-yang-01 (work
in progress), April 2017. in progress), April 2017.
[I-D.ietf-mpls-base-yang] [I-D.ietf-mpls-base-yang]
Raza, K., Gandhi, R., Liu, X., Beeram, V., Saad, T., Raza, K., Gandhi, R., Liu, X., Beeram, V., Saad, T.,
Bryskin, I., Chen, X., Jones, R., and B. Wen, "A YANG Data Bryskin, I., Chen, X., Jones, R., and B. Wen, "A YANG Data
Model for MPLS Base", draft-ietf-mpls-base-yang-04 (work Model for MPLS Base", draft-ietf-mpls-base-yang-05 (work
in progress), March 2017. in progress), July 2017.
[RFC3032] Rosen, E., Tappan, D., Fedorkow, G., Rekhter, Y., [RFC3032] Rosen, E., Tappan, D., Fedorkow, G., Rekhter, Y.,
Farinacci, D., Li, T., and A. Conta, "MPLS Label Stack Farinacci, D., Li, T., and A. Conta, "MPLS Label Stack
Encoding", RFC 3032, DOI 10.17487/RFC3032, January 2001, Encoding", RFC 3032, DOI 10.17487/RFC3032, January 2001,
<http://www.rfc-editor.org/info/rfc3032>. <http://www.rfc-editor.org/info/rfc3032>.
[RFC3209] Awduche, D., Berger, L., Gan, D., Li, T., Srinivasan, V., [RFC3209] Awduche, D., Berger, L., Gan, D., Li, T., Srinivasan, V.,
and G. Swallow, "RSVP-TE: Extensions to RSVP for LSP and G. Swallow, "RSVP-TE: Extensions to RSVP for LSP
Tunnels", RFC 3209, DOI 10.17487/RFC3209, December 2001, Tunnels", RFC 3209, DOI 10.17487/RFC3209, December 2001,
<http://www.rfc-editor.org/info/rfc3209>. <http://www.rfc-editor.org/info/rfc3209>.
skipping to change at page 39, line 18 skipping to change at page 38, line 18
[RFC5880] Katz, D. and D. Ward, "Bidirectional Forwarding Detection [RFC5880] Katz, D. and D. Ward, "Bidirectional Forwarding Detection
(BFD)", RFC 5880, DOI 10.17487/RFC5880, June 2010, (BFD)", RFC 5880, DOI 10.17487/RFC5880, June 2010,
<http://www.rfc-editor.org/info/rfc5880>. <http://www.rfc-editor.org/info/rfc5880>.
[RFC7274] Kompella, K., Andersson, L., and A. Farrel, "Allocating [RFC7274] Kompella, K., Andersson, L., and A. Farrel, "Allocating
and Retiring Special-Purpose MPLS Labels", RFC 7274, and Retiring Special-Purpose MPLS Labels", RFC 7274,
DOI 10.17487/RFC7274, June 2014, DOI 10.17487/RFC7274, June 2014,
<http://www.rfc-editor.org/info/rfc7274>. <http://www.rfc-editor.org/info/rfc7274>.
[WGS84] National Imagery and Mapping Agency, "Department of [RFC7432] Sajassi, A., Ed., Aggarwal, R., Bitar, N., Isaac, A.,
Defense World Geodetic System 1984, Third Edition", Uttaro, J., Drake, J., and W. Henderickx, "BGP MPLS-Based
NIMA TR83500.2, January 2000. Ethernet VPN", RFC 7432, DOI 10.17487/RFC7432, February
2015, <http://www.rfc-editor.org/info/rfc7432>.
Authors' Addresses Authors' Addresses
Xufeng Liu Xufeng Liu
Jabil Jabil
8281 Greensboro Drive, Suite 200 8281 Greensboro Drive, Suite 200
McLean VA 22102 McLean VA 22102
USA USA
EMail: Xufeng_Liu@jabil.com EMail: Xufeng_Liu@jabil.com
 End of changes. 74 change blocks. 
783 lines changed or deleted 731 lines changed or added

This html diff was produced by rfcdiff 1.45. The latest version is available from http://tools.ietf.org/tools/rfcdiff/