draft-ietf-rtgwg-srv6-egress-protection-01.txt   draft-ietf-rtgwg-srv6-egress-protection-02.txt 
Network Working Group Z. Hu Network Working Group Z. Hu
Internet-Draft Huawei Internet-Draft Huawei
Intended status: Standards Track H. Chen Intended status: Standards Track H. Chen
Expires: January 29, 2021 Futurewei Expires: June 3, 2021 Futurewei
H. Chen H. Chen
China Telecom China Telecom
P. Wu P. Wu
Huawei Huawei
M. Toy M. Toy
Verizon Verizon
C. Cao C. Cao
T. He T. He
China Unicom China Unicom
L. Liu L. Liu
Fujitsu Fujitsu
X. Liu X. Liu
Volta Networks Volta Networks
July 28, 2020 November 30, 2020
SRv6 Path Egress Protection SRv6 Path Egress Protection
draft-ietf-rtgwg-srv6-egress-protection-01 draft-ietf-rtgwg-srv6-egress-protection-02
Abstract Abstract
This document describes protocol extensions for protecting the egress This document describes protocol extensions for protecting the egress
node of a Segment Routing for IPv6 (SRv6) path or tunnel. node of a Segment Routing for IPv6 (SRv6) path or tunnel.
Requirements Language Requirements Language
The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT", The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",
"SHOULD", "SHOULD NOT", "RECOMMENDED", "MAY", and "OPTIONAL" in this "SHOULD", "SHOULD NOT", "RECOMMENDED", "MAY", and "OPTIONAL" in this
skipping to change at page 2, line 4 skipping to change at page 2, line 4
Internet-Drafts are working documents of the Internet Engineering Internet-Drafts are working documents of the Internet Engineering
Task Force (IETF). Note that other groups may also distribute Task Force (IETF). Note that other groups may also distribute
working documents as Internet-Drafts. The list of current Internet- working documents as Internet-Drafts. The list of current Internet-
Drafts is at https://datatracker.ietf.org/drafts/current/. Drafts is at https://datatracker.ietf.org/drafts/current/.
Internet-Drafts are draft documents valid for a maximum of six months Internet-Drafts are draft documents valid for a maximum of six months
and may be updated, replaced, or obsoleted by other documents at any and may be updated, replaced, or obsoleted by other documents at any
time. It is inappropriate to use Internet-Drafts as reference time. It is inappropriate to use Internet-Drafts as reference
material or to cite them other than as "work in progress." material or to cite them other than as "work in progress."
This Internet-Draft will expire on January 29, 2021. This Internet-Draft will expire on June 3, 2021.
Copyright Notice Copyright Notice
Copyright (c) 2020 IETF Trust and the persons identified as the Copyright (c) 2020 IETF Trust and the persons identified as the
document authors. All rights reserved. document authors. All rights reserved.
This document is subject to BCP 78 and the IETF Trust's Legal This document is subject to BCP 78 and the IETF Trust's Legal
Provisions Relating to IETF Documents Provisions Relating to IETF Documents
(https://trustee.ietf.org/license-info) in effect on the date of (https://trustee.ietf.org/license-info) in effect on the date of
publication of this document. Please review these documents publication of this document. Please review these documents
skipping to change at page 2, line 33 skipping to change at page 2, line 33
1. Introduction . . . . . . . . . . . . . . . . . . . . . . . . 2 1. Introduction . . . . . . . . . . . . . . . . . . . . . . . . 2
2. Terminologies . . . . . . . . . . . . . . . . . . . . . . . . 3 2. Terminologies . . . . . . . . . . . . . . . . . . . . . . . . 3
3. SR Path Egress Protection . . . . . . . . . . . . . . . . . . 4 3. SR Path Egress Protection . . . . . . . . . . . . . . . . . . 4
3.1. Mechanism . . . . . . . . . . . . . . . . . . . . . . . . 4 3.1. Mechanism . . . . . . . . . . . . . . . . . . . . . . . . 4
3.2. Example . . . . . . . . . . . . . . . . . . . . . . . . . 6 3.2. Example . . . . . . . . . . . . . . . . . . . . . . . . . 6
4. Extensions to IGP for Egress Protection . . . . . . . . . . . 8 4. Extensions to IGP for Egress Protection . . . . . . . . . . . 8
4.1. Extensions to IS-IS . . . . . . . . . . . . . . . . . . . 8 4.1. Extensions to IS-IS . . . . . . . . . . . . . . . . . . . 8
4.2. Extensions to OSPF . . . . . . . . . . . . . . . . . . . 10 4.2. Extensions to OSPF . . . . . . . . . . . . . . . . . . . 10
5. Security Considerations . . . . . . . . . . . . . . . . . . . 12 5. Security Considerations . . . . . . . . . . . . . . . . . . . 12
6. IANA Considerations . . . . . . . . . . . . . . . . . . . . . 12 6. IANA Considerations . . . . . . . . . . . . . . . . . . . . . 12
6.1. IS-IS . . . . . . . . . . . . . . . . . . . . . . . . . . 12 6.1. SRv6 Endpoint Behaviors . . . . . . . . . . . . . . . . . 12
6.2. OSPFv3 . . . . . . . . . . . . . . . . . . . . . . . . . 12 6.2. IS-IS . . . . . . . . . . . . . . . . . . . . . . . . . . 13
7. Acknowledgements . . . . . . . . . . . . . . . . . . . . . . 13 6.3. OSPFv3 . . . . . . . . . . . . . . . . . . . . . . . . . 13
8. References . . . . . . . . . . . . . . . . . . . . . . . . . 13 7. Acknowledgements . . . . . . . . . . . . . . . . . . . . . . 14
8.1. Normative References . . . . . . . . . . . . . . . . . . 13 8. References . . . . . . . . . . . . . . . . . . . . . . . . . 14
8.2. Informative References . . . . . . . . . . . . . . . . . 14 8.1. Normative References . . . . . . . . . . . . . . . . . . 14
Authors' Addresses . . . . . . . . . . . . . . . . . . . . . . . 15 8.2. Informative References . . . . . . . . . . . . . . . . . 15
Authors' Addresses . . . . . . . . . . . . . . . . . . . . . . . 16
1. Introduction 1. Introduction
The fast protection of a transit node of a Segment Routing (SR) path The fast protection of a transit node of a Segment Routing (SR) path
or tunnel is described in [I-D.ietf-rtgwg-segment-routing-ti-lfa] and or tunnel is described in [I-D.ietf-rtgwg-segment-routing-ti-lfa] and
[I-D.hu-spring-segment-routing-proxy-forwarding]. [RFC8400] [I-D.hu-spring-segment-routing-proxy-forwarding]. [RFC8400]
specifies the fast protection of egress node(s) of an MPLS TE LSP specifies the fast protection of egress node(s) of an MPLS TE LSP
tunnel including P2P TE LSP tunnel and P2MP TE LSP tunnel in details. tunnel including P2P TE LSP tunnel and P2MP TE LSP tunnel in details.
However, these documents do not discuss the fast protection of the However, these documents do not discuss the fast protection of the
egress node of a Segment Routing for IPv6 (SRv6) path or tunnel. egress node of a Segment Routing for IPv6 (SRv6) path or tunnel.
skipping to change at page 6, line 9 skipping to change at page 6, line 9
The execution of H.Encaps pushes an IPv6 header to Pkt and sets some The execution of H.Encaps pushes an IPv6 header to Pkt and sets some
fields in the outer and inner IPv6 header to produce an encapsulated fields in the outer and inner IPv6 header to produce an encapsulated
packet Pkt'. Pkt' will be one of the followings: packet Pkt'. Pkt' will be one of the followings:
o Pkt' = (T, Mirror SID) (S, SIDa)Pkt0 if RL = <Mirror SID>; or o Pkt' = (T, Mirror SID) (S, SIDa)Pkt0 if RL = <Mirror SID>; or
o Pkt' = (T, S1)(Mirror SID, Sn, ..., S1; SL=n) (S, SIDa)Pkt0 if RL o Pkt' = (T, S1)(Mirror SID, Sn, ..., S1; SL=n) (S, SIDa)Pkt0 if RL
= <S1, ..., Sn, Mirror SID>. = <S1, ..., Sn, Mirror SID>.
When PEB receives the re-routed packet, which is (T, Mirror SID) (S, When PEB receives the re-routed packet, which is (T, Mirror SID) (S,
SIDa)Pkt0, it decapsulates the packet and forwards the decapsulated SIDa)Pkt0, it decapsulates the packet and forwards the decapsulated
packet using the forwarding table identified by Mirror SID through packet using the FIB table identified by the Mirror SID as an End.DT6
executing End.DT6. SID instance through executing End.DT6. The Mirror SID is called
End.M.
It obtains the Mirror SID in the outer IPv6 header of the packet, It obtains the Mirror SID in the outer IPv6 header of the packet,
removes this outer IPv6 header with all its extension headers, and removes this outer IPv6 header with all its extension headers, and
then processes the inner IPv6 packet (i.e., (S, SIDa)Pkt0, the packet then processes the inner IPv6 packet (i.e., (S, SIDa)Pkt0, the packet
without the outer IPv6 header). PEB finds the forwarding table for without the outer IPv6 header). PEB finds the FIB table for node PEA
node PEA using the Mirror SID as the context ID, and submits the using the Mirror SID as the context ID, and submits the packet to
packet to this forwarding table lookup and transmission to the same this FIB table lookup and transmission to the same destination as PEA
destination as PEA does. does.
3.2. Example 3.2. Example
Figure 2 shows an example of protecting egress PE3 of a SR path, Figure 2 shows an example of protecting egress PE3 of a SR path,
which is from ingress PE1 to egress PE3. which is from ingress PE1 to egress PE3.
******* ******* VPN SID: A3:1::B100 ******* ******* VPN SID: A3:1::B100
[PE1]-----[P1]-----[PE3]---[CE2] PE3 Egress [PE1]-----[P1]-----[PE3]---[CE2] PE3 Egress
/ | |& | \ / PE4 Backup Egress / | |& | \ / PE4 Backup Egress
/ | |& | \ / CEx Customer Edge / | |& | \ / CEx Customer Edge
skipping to change at page 7, line 22 skipping to change at page 7, line 22
to PE3 that is protected by PE4 through Mirror SID A4:1::3, it finds to PE3 that is protected by PE4 through Mirror SID A4:1::3, it finds
PE4's VPN SID corresponding to PE3's VPN SID. For example, local PE4 PE4's VPN SID corresponding to PE3's VPN SID. For example, local PE4
has Prefix 1.1.1.1 with VPN SID A4:1::B100, when PE4 receives prefix has Prefix 1.1.1.1 with VPN SID A4:1::B100, when PE4 receives prefix
1.1.1.1 with remote PE3's VPN SID A3:1::B100, it knows that they are 1.1.1.1 with remote PE3's VPN SID A3:1::B100, it knows that they are
for the same VPN. for the same VPN.
The forwarding behaviors for these two VPN SIDs are the same from The forwarding behaviors for these two VPN SIDs are the same from
function's point of view. If the behavior for PE3's VPN SID in PE3 function's point of view. If the behavior for PE3's VPN SID in PE3
forwards the packet with it to CE2, then the behavior for PE4's VPN forwards the packet with it to CE2, then the behavior for PE4's VPN
SID in PE4 forwards the packet to the same CE2; and vice versa. PE4 SID in PE4 forwards the packet to the same CE2; and vice versa. PE4
creates a forwarding entry for PE3's VPN SID A3:1::B100 in the table creates a forwarding entry for PE3's VPN SID A3:1::B100 in the FIB
(or FIB) identified by Mirror SID A4:1::3 according to the forwarding table identified by Mirror SID A4:1::3 according to the forwarding
behavior for PE4's VPN SID A4:1::B100. behavior for PE4's VPN SID A4:1::B100.
Node P1's pre-computed backup path for destination PE3 is from P1 to Node P1's pre-computed backup path for destination PE3 is from P1 to
PE4 having mirror SID A4:1::3. When P1 receives a packet destined to PE4 having mirror SID A4:1::3. When P1 receives a packet destined to
PE3's VPN SID A3:1::B100, in normal operations, it forwards the PE3's VPN SID A3:1::B100, in normal operations, it forwards the
packet with source A1:1:: and destination PE3's VPN SID A3:1::B100 packet with source A1:1:: and destination PE3's VPN SID A3:1::B100
according to the FIB using the destination PE3's VPN SID A3:1::B100. according to the FIB using the destination PE3's VPN SID A3:1::B100.
When PE3 fails, P1 as PLR sends the packet to PE4 via the backup path When PE3 fails, P1 as PLR sends the packet to PE4 via the backup path
pre-computed. P1 encapsulates the packet using H.Encaps before pre-computed. P1 encapsulates the packet using H.Encaps before
skipping to change at page 7, line 51 skipping to change at page 7, line 51
o Pkt' = (T, Mirror SID A4:1::3) (A1:1::, A3:1::B100)Pkt0 if backup o Pkt' = (T, Mirror SID A4:1::3) (A1:1::, A3:1::B100)Pkt0 if backup
path not via PE3; or (otherwise) path not via PE3; or (otherwise)
o Pkt' = (T, S1)(Mirror SID A4:1::3, Sn, ..., S1; SL=n) (A1:1::, o Pkt' = (T, S1)(Mirror SID A4:1::3, Sn, ..., S1; SL=n) (A1:1::,
A3:1::B100)Pkt0. A3:1::B100)Pkt0.
where T is a Source Address, <S1, ..., Sn> is the TI-LFA Repair List where T is a Source Address, <S1, ..., Sn> is the TI-LFA Repair List
to PE4 computed by P1 when the backup path to PE4 goes through PE3. to PE4 computed by P1 when the backup path to PE4 goes through PE3.
When PE4 receives the re-routed packet, it decapsulates the packet When PE4 receives the re-routed packet, it decapsulates the packet
and forwards the decapsulated packet by End.DT6. The packet received and forwards the decapsulated packet by executing End.DT6 behavior
by PE4 is (T, Mirror SID A4:1::3) (A1:1::, PE3's VPN SID for an End.DT6 SID instance. The SID instance is End.M, the Mirror
SID that is associated with the IPv6 FIB table for PE3. The packet
received by PE4 is (T, Mirror SID A4:1::3) (A1:1::, PE3's VPN SID
A3:1::B100)Pkt0. A3:1::B100)Pkt0.
PE4 obtains Mirror SID A4:1::3 in the outer IPv6 header of the PE4 obtains Mirror SID A4:1::3 in the outer IPv6 header of the
packet, removes this outer IPv6 header, and then processes the inner packet, removes this outer IPv6 header, and then processes the inner
IPv6 packet (A1:1::, A3:1::B100)Pkt0. It finds the forwarding table IPv6 packet (A1:1::, A3:1::B100)Pkt0. It finds the FIB table for PE3
for PE3 using Mirror SID A4:1::3 as the context ID, gets the using Mirror SID A4:1::3 as the context ID, gets the forwarding entry
forwarding entry for PE3's VPN SID A3:1::B100 from the table, and for PE3's VPN SID A3:1::B100 from the table, and forwards the packet
forwards the packet to CE2 using the entry. to CE2 using the entry.
4. Extensions to IGP for Egress Protection 4. Extensions to IGP for Egress Protection
This section describes extensions to IS-IS and OSPF for advertising This section describes extensions to IS-IS and OSPF for advertising
the information about SRv6 path egress protection. the information about SRv6 path egress protection.
4.1. Extensions to IS-IS 4.1. Extensions to IS-IS
A new sub-TLV, called IS-IS SRv6 Mirror SID sub-TLV, is defined. It A new sub-TLV, called IS-IS SRv6 Mirror SID sub-TLV, is defined. It
is used in the SRv6 Locator TLV defined in is used in the SRv6 Locator TLV defined in
skipping to change at page 9, line 33 skipping to change at page 9, line 36
ID). ID).
A protected SIDs sub-TLV is used to carry the SIDs to be protected by A protected SIDs sub-TLV is used to carry the SIDs to be protected by
the SRv6 Mirror SID. It has the following format. the SRv6 Mirror SID. It has the following format.
0 1 2 3 0 1 2 3
0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| Type (TBD3) | Length | | Type (TBD3) | Length |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| SID (16 octets) ~ | SID-Size | SID (variable) ~
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
: : : :
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| SID (16 octets) ~ | SID-Size | SID (variable) ~
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
Figure 5: IS-IS Protected SIDs sub-TLV Figure 5: IS-IS Protected SIDs sub-TLV
Type: TBD3 (suggested value 2) is to be assigned by IANA. Type: TBD3 (suggested value 2) is to be assigned by IANA.
Length: variable. Length: variable.
SID: 16 octets. This field encodes an SRv6 SID to be protected. SID-Size: 1 octet. Number of bits in the SID field. It is from 1
to 128. When it is less than 128, the SID field is a locator.
When it is 128, the SID field is an SRv6 SID.
SID: 1-16 octets. This field encodes an SRv6 SID or locator to be
protected. The SID/locator is encoded in the minimal number of
octets for the given number of bits. Trailing bits MUST be set to
zero and ignored when received.
When node B advertises that B wants to protect node A with a Mirror When node B advertises that B wants to protect node A with a Mirror
SID through an LSP, the LSP contains an IS-IS SRv6 Mirror SID sub- SID through an LSP, the LSP contains an IS-IS SRv6 Mirror SID sub-
TLV, which includes the Mirror SID and the node A's ID in an IS-IS TLV, which includes the Mirror SID and the node A's ID in an IS-IS
Protected Node sub-TLV. If B wants to protect just a specific set of Protected Node sub-TLV. If B wants to protect just a specific set of
SIDs of node A, the Mirror SID sub-TLV includes these SIDs in an IS- SIDs of node A, the Mirror SID sub-TLV includes these SIDs in an IS-
IS Protected SIDs sub-TLV; otherwise (i.e., B wants to protect all IS Protected SIDs sub-TLV; otherwise (i.e., B wants to protect all
the SIDs of A) it does not contain any IS-IS Protected SIDs sub-TLV. the SIDs of A) it does not contain any IS-IS Protected SIDs sub-TLV.
Note: the IS-IS extensions for SR MPLS is described in [RFC8667]. It Note: the IS-IS extensions for SR MPLS is described in [RFC8667]. It
skipping to change at page 11, line 39 skipping to change at page 12, line 10
be protected. be protected.
A protected SIDs sub-TLV is used to carry the SIDs to be protected by A protected SIDs sub-TLV is used to carry the SIDs to be protected by
the SRv6 Mirror SID. It has the following format. the SRv6 Mirror SID. It has the following format.
0 1 2 3 0 1 2 3
0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| Type (TBD6) | Length | | Type (TBD6) | Length |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| SID (16 octets) ~ | SID-Size | SID (variable) ~
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
: : : :
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| SID (16 octets) ~ | SID-Size | SID (variable) ~
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
Figure 8: OSPF Protected SIDs sub-TLV Figure 8: OSPF Protected SIDs sub-TLV
Type: TBD6 (suggested value 2) is to be assigned by IANA. Type: TBD6 (suggested value 2) is to be assigned by IANA.
Length: variable. Length: variable.
SID: 16 octets. This field encodes an SRv6 SID to be protected. SID-Size: 1 octet. Number of bits in the SID field. It is from 1
to 128. When it is less than 128, the SID field is a locator.
When it is 128, the SID field is an SRv6 SID.
SID: 1-16 octets. This field encodes an SRv6 SID or locator to be
protected. The SID/locator is encoded in the minimal number of
octets for the given number of bits. Trailing bits MUST be set to
zero and ignored when received.
5. Security Considerations 5. Security Considerations
The security about the egress protection is described in in details The security about the egress protection is described in in details
in [RFC8679]. The extensions to OSPF and IS-IS described in this in [RFC8679]. The extensions to OSPF and IS-IS described in this
document for SRv6 path egress protection should not cause extra document for SRv6 path egress protection should not cause extra
security issues. security issues.
6. IANA Considerations 6. IANA Considerations
6.1. IS-IS 6.1. SRv6 Endpoint Behaviors
Under sub-registry "SRv6 Endpoint Behaviors",
[I-D.ietf-spring-srv6-network-programming], IANA is requested to
assign the following Mirror SID as an End.DT6 SID instance:
+==============+========+=====================+===============+
| Value | Hex | Endpoint behavior | Reference |
+==============+========+=====================+===============+
| 40(suggested)| 0x0028 | End.M (Mirror SID) | This document |
+--------------+--------+---------------------+---------------+
6.2. IS-IS
Under "Sub-TLVs for TLVs 27, 135, 235, 236 and 237 registry" Under "Sub-TLVs for TLVs 27, 135, 235, 236 and 237 registry"
[I-D.ietf-lsr-isis-srv6-extensions], IANA is requested to add the [I-D.ietf-lsr-isis-srv6-extensions], IANA is requested to add the
following new Sub-TLV: following new Sub-TLV:
+==============+=========================+===============+ +==============+=========================+===============+
| Sub-TLV Type | Sub-TLV Name | Reference | | Sub-TLV Type | Sub-TLV Name | Reference |
+==============+=========================+===============+ +==============+=========================+===============+
| 8 | SRv6 Mirror SID Sub-TLV | This document | | 8 | SRv6 Mirror SID Sub-TLV | This document |
+--------------+-------------------------+---------------+ +--------------+-------------------------+---------------+
skipping to change at page 12, line 41 skipping to change at page 13, line 32
Initial values for the registry are given below. The future Initial values for the registry are given below. The future
assignments are to be made through IETF Review [RFC5226]. assignments are to be made through IETF Review [RFC5226].
Value Sub-Sub-TLV Name Definition Value Sub-Sub-TLV Name Definition
----- ----------------------- ------------- ----- ----------------------- -------------
0 Reserved 0 Reserved
1 Protected Node Sub-Sub-TLV This Document 1 Protected Node Sub-Sub-TLV This Document
2 Protected SIDs Sub-Sub-TLV 2 Protected SIDs Sub-Sub-TLV
3-255 Unassigned 3-255 Unassigned
6.2. OSPFv3 6.3. OSPFv3
Under registry "OSPFv3 Locator LSA Sub-TLVs" Under registry "OSPFv3 Locator LSA Sub-TLVs"
[I-D.li-ospf-ospfv3-srv6-extensions], IANA is requested to assign the [I-D.li-ospf-ospfv3-srv6-extensions], IANA is requested to assign the
following new Sub-TLV: following new Sub-TLV:
+==============+=========================+===============+ +==============+=========================+===============+
| Sub-TLV Type | Sub-TLV Name | Reference | | Sub-TLV Type | Sub-TLV Name | Reference |
+==============+=========================+===============+ +==============+=========================+===============+
| 8 | SRv6 Mirror SID Sub-TLV | This document | | 8 | SRv6 Mirror SID Sub-TLV | This document |
+--------------+-------------------------+---------------+ +--------------+-------------------------+---------------+
skipping to change at page 13, line 23 skipping to change at page 14, line 15
Value Sub-Sub-TLV Name Definition Value Sub-Sub-TLV Name Definition
----- ----------------------- ------------- ----- ----------------------- -------------
0 Reserved 0 Reserved
1 Protected Node Sub-Sub-TLV This Document 1 Protected Node Sub-Sub-TLV This Document
2 Protected SIDs Sub-Sub-TLV 2 Protected SIDs Sub-Sub-TLV
3-65535 Unassigned 3-65535 Unassigned
7. Acknowledgements 7. Acknowledgements
The authors would like to thank Peter Psenak, Yimin Shen, Zhenqiang The authors would like to thank Peter Psenak, Yimin Shen, Zhenqiang
Li, Alexander Vainshtein, Greg Mirsky, Bruno Decraene and Jeff Li, Alexander Vainshtein, Greg Mirsky, Bruno Decraene, Jeff Tantsura,
Tantsura for their comments to this work. Chris Bowers and Ketan Talaulikar for their comments to this work.
8. References 8. References
8.1. Normative References 8.1. Normative References
[I-D.ietf-lsr-isis-srv6-extensions] [I-D.ietf-lsr-isis-srv6-extensions]
Psenak, P., Filsfils, C., Bashandy, A., Decraene, B., and Psenak, P., Filsfils, C., Bashandy, A., Decraene, B., and
Z. Hu, "IS-IS Extension to Support Segment Routing over Z. Hu, "IS-IS Extension to Support Segment Routing over
IPv6 Dataplane", draft-ietf-lsr-isis-srv6-extensions-08 IPv6 Dataplane", draft-ietf-lsr-isis-srv6-extensions-11
(work in progress), April 2020. (work in progress), October 2020.
[I-D.ietf-spring-srv6-network-programming]
Filsfils, C., Camarillo, P., Leddy, J., Voyer, D.,
Matsushima, S., and Z. Li, "SRv6 Network Programming",
draft-ietf-spring-srv6-network-programming-26 (work in
progress), November 2020.
[I-D.li-ospf-ospfv3-srv6-extensions] [I-D.li-ospf-ospfv3-srv6-extensions]
Li, Z., Hu, Z., Cheng, D., Talaulikar, K., and P. Psenak, Li, Z., Hu, Z., Cheng, D., Talaulikar, K., and P. Psenak,
"OSPFv3 Extensions for SRv6", draft-li-ospf- "OSPFv3 Extensions for SRv6", draft-li-ospf-
ospfv3-srv6-extensions-07 (work in progress), November ospfv3-srv6-extensions-07 (work in progress), November
2019. 2019.
[RFC2119] Bradner, S., "Key words for use in RFCs to Indicate [RFC2119] Bradner, S., "Key words for use in RFCs to Indicate
Requirement Levels", BCP 14, RFC 2119, Requirement Levels", BCP 14, RFC 2119,
DOI 10.17487/RFC2119, March 1997, DOI 10.17487/RFC2119, March 1997,
skipping to change at page 14, line 42 skipping to change at page 15, line 42
[RFC8679] Shen, Y., Jeganathan, M., Decraene, B., Gredler, H., [RFC8679] Shen, Y., Jeganathan, M., Decraene, B., Gredler, H.,
Michel, C., and H. Chen, "MPLS Egress Protection Michel, C., and H. Chen, "MPLS Egress Protection
Framework", RFC 8679, DOI 10.17487/RFC8679, December 2019, Framework", RFC 8679, DOI 10.17487/RFC8679, December 2019,
<https://www.rfc-editor.org/info/rfc8679>. <https://www.rfc-editor.org/info/rfc8679>.
8.2. Informative References 8.2. Informative References
[I-D.hegde-spring-node-protection-for-sr-te-paths] [I-D.hegde-spring-node-protection-for-sr-te-paths]
Hegde, S., Bowers, C., Litkowski, S., Xu, X., and F. Xu, Hegde, S., Bowers, C., Litkowski, S., Xu, X., and F. Xu,
"Node Protection for SR-TE Paths", draft-hegde-spring- "Node Protection for SR-TE Paths", draft-hegde-spring-
node-protection-for-sr-te-paths-06 (work in progress), node-protection-for-sr-te-paths-07 (work in progress),
July 2020. July 2020.
[I-D.hu-spring-segment-routing-proxy-forwarding] [I-D.hu-spring-segment-routing-proxy-forwarding]
Hu, Z., Chen, H., Yao, J., Bowers, C., and Y. Zhu, "SR-TE Hu, Z., Chen, H., Yao, J., Bowers, C., and Y. Zhu, "SR-TE
Path Midpoint Protection", draft-hu-spring-segment- Path Midpoint Protection", draft-hu-spring-segment-
routing-proxy-forwarding-09 (work in progress), July 2020. routing-proxy-forwarding-12 (work in progress), October
2020.
[I-D.ietf-rtgwg-segment-routing-ti-lfa] [I-D.ietf-rtgwg-segment-routing-ti-lfa]
Litkowski, S., Bashandy, A., Filsfils, C., Decraene, B., Litkowski, S., Bashandy, A., Filsfils, C., Decraene, B.,
Francois, P., Voyer, D., Clad, F., and P. Camarillo, and D. Voyer, "Topology Independent Fast Reroute using
"Topology Independent Fast Reroute using Segment Routing", Segment Routing", draft-ietf-rtgwg-segment-routing-ti-
draft-ietf-rtgwg-segment-routing-ti-lfa-03 (work in lfa-05 (work in progress), November 2020.
progress), March 2020.
[I-D.ietf-spring-segment-routing-policy] [I-D.ietf-spring-segment-routing-policy]
Filsfils, C., Talaulikar, K., Voyer, D., Bogdanov, A., and Filsfils, C., Talaulikar, K., Voyer, D., Bogdanov, A., and
P. Mattes, "Segment Routing Policy Architecture", draft- P. Mattes, "Segment Routing Policy Architecture", draft-
ietf-spring-segment-routing-policy-08 (work in progress), ietf-spring-segment-routing-policy-09 (work in progress),
July 2020. November 2020.
[I-D.sivabalan-pce-binding-label-sid] [I-D.sivabalan-pce-binding-label-sid]
Sivabalan, S., Filsfils, C., Tantsura, J., Hardwick, J., Sivabalan, S., Filsfils, C., Tantsura, J., Hardwick, J.,
Previdi, S., and C. Li, "Carrying Binding Label/Segment-ID Previdi, S., and C. Li, "Carrying Binding Label/Segment-ID
in PCE-based Networks.", draft-sivabalan-pce-binding- in PCE-based Networks.", draft-sivabalan-pce-binding-
label-sid-07 (work in progress), July 2019. label-sid-07 (work in progress), July 2019.
[RFC5226] Narten, T. and H. Alvestrand, "Guidelines for Writing an [RFC5226] Narten, T. and H. Alvestrand, "Guidelines for Writing an
IANA Considerations Section in RFCs", RFC 5226, IANA Considerations Section in RFCs", RFC 5226,
DOI 10.17487/RFC5226, May 2008, DOI 10.17487/RFC5226, May 2008,
 End of changes. 24 change blocks. 
45 lines changed or deleted 81 lines changed or added

This html diff was produced by rfcdiff 1.48. The latest version is available from http://tools.ietf.org/tools/rfcdiff/