TEAS Working Group                                               T. Saad
Internet-Draft                                                 R. Gandhi                                          Juniper Networks
Intended status: Standards Track                               R. Gandhi
Expires: May 5, 2020                                   Cisco Systems Inc
Expires: August 27, 2019
                                                                  X. Liu
                                                          Volta Networks
                                                               V. Beeram
                                                        Juniper Networks
                                                              I. Bryskin
                                                     Huawei Technologies
                                                       February 23,
                                                              Individual
                                                       November 02, 2019

         A YANG Data Model for MPLS Traffic Engineering Tunnels
                    draft-ietf-teas-yang-te-mpls-01
                    draft-ietf-teas-yang-te-mpls-02

Abstract

   This document defines a YANG data model for the configuration and
   management of Multiprotocol Label Switching (MPLS) Traffic
   Engineering (TE) tunnels, Label Switched Paths (LSPs) and interfaces.
   The model augments the TE generic YANG model for MPLS packet
   dataplane technology.

   This model covers data for configuration, operational state, remote
   procedural calls, and event notifications.

Status of This Memo

   This Internet-Draft is submitted in full conformance with the
   provisions of BCP 78 and BCP 79.

   Internet-Drafts are working documents of the Internet Engineering
   Task Force (IETF).  Note that other groups may also distribute
   working documents as Internet-Drafts.  The list of current Internet-
   Drafts is at https://datatracker.ietf.org/drafts/current/.

   Internet-Drafts are draft documents valid for a maximum of six months
   and may be updated, replaced, or obsoleted by other documents at any
   time.  It is inappropriate to use Internet-Drafts as reference
   material or to cite them other than as "work in progress."

   This Internet-Draft will expire on August 27, 2019. May 5, 2020.

Copyright Notice

   Copyright (c) 2019 IETF Trust and the persons identified as the
   document authors.  All rights reserved.

   This document is subject to BCP 78 and the IETF Trust's Legal
   Provisions Relating to IETF Documents
   (https://trustee.ietf.org/license-info) in effect on the date of
   publication of this document.  Please review these documents
   carefully, as they describe your rights and restrictions with respect
   to this document.  Code Components extracted from this document must
   include Simplified BSD License text as described in Section 4.e of
   the Trust Legal Provisions and are provided without warranty as
   described in the Simplified BSD License.

Table of Contents

   1.  Introduction  . . . . . . . . . . . . . . . . . . . . . . . .   2
     1.1.  Terminology . . . . . . . . . . . . . . . . . . . . . . .   2   3
     1.2.  Prefixes in Data Node Names . . . . . . . . . . . . . . .   3
     1.3.  Acronyms and Abbreviations  . . . . . . . . . . . . . . .   3
   2.  MPLS TE YANG Model  . . . . . . . . . . . . . . . . . . . . .   3
     2.1.  Module(s) Relationship  . . . . . . . . . . . . . . . . .   3   4
     2.2.  Model Tree Diagram  . . . . . . . . . . . . . . . . . . .   4
     2.3.  MPLS TE YANG Module . . . . . . . . . . . . . . . . . . .   7   8
   3.  IANA Considerations . . . . . . . . . . . . . . . . . . . . .  17
   4.  Security Considerations . . . . . . . . . . . . . . . . . . .  18
   5.  Contributors  . . . . . . . . . . . . . . . . . . . . . . . .  18
   6.  Normative References  . . . . . . . . . . . . . . . . . . . .  18
   Authors' Addresses  . . . . . . . . . . . . . . . . . . . . . . .  20

1.  Introduction

   YANG [RFC6020] and [RFC7950] is a data modeling language used to
   define the contents of a conceptual data store that allows networked
   devices to be managed using NETCONF [RFC6241].  YANG has proved
   relevant beyond its initial confines, as bindings to other interfaces
   (e.g.  RESTCONF [RFC8040]) and encoding other than XML (e.g.  JSON)
   are being defined.  Furthermore, YANG data models can be used as the
   basis of implementation for other interfaces, such as CLI and
   programmatic APIs.

   This document describes the YANG data model for configuration and
   management of MPLS TE tunnels, LSPs, and interfaces.  Other YANG
   module(s) that model the establishment of MPLS LSP(s) via signaling
   protocols such as RSVP-TE ([RFC3209], [RFC3473]) are described in
   separate document(s).

1.1.  Terminology

   The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",
   "SHOULD", "SHOULD NOT", "RECOMMENDED", "NOT RECOMMENDED", "MAY", and
   "OPTIONAL" in this document are to be interpreted as described in BCP
   14 [RFC2119] [RFC8174] when, and only when, they appear in all
   capitals, as shown here.

   The terminology for describing YANG data models is found in
   [RFC7950].

1.2.  Prefixes in Data Node Names

   In this document, names of data nodes and other data model objects
   are prefixed using the standard prefix associated with the
   corresponding YANG imported modules, as shown in Table 1.

  +---------------+--------------------+-------------------------------+
  | Prefix        | YANG module        | Reference                     |
  +---------------+--------------------+-------------------------------+
  | yang          | ietf-yang-types    | [RFC6991]                     |
  | inet          | ietf-inet-types    | [RFC6991]                     |
  | rt-types      | ietf-routing-types | [RFC8294]                     |
  | te            | ietf-te            | [I-D.ietf-teas-yang-te]       |
  | te-dev        | ietf-te-device     | [I-D.ietf-teas-yang-te]       |
  | te-mpls       | ietf-te-mpls       | This document                 |
  | te-types      | ietf-te-types      | [I-D.ietf-teas-yang-te-types] |
  | te-mpls-types | ietf-te-mpls-types | [I-D.ietf-teas-yang-te-types] |
  +---------------+--------------------+-------------------------------+

             Table 1: Prefixes and corresponding YANG modules

1.3.  Acronyms and Abbreviations

      MPLS: Multiprotocol Label Switching LSP: Label Switched Path LSR:
      Label Switching Router LER: Label Edge Router TE: Traffic
      Engineering

2.  MPLS TE YANG Model

   The MPLS TE YANG model covers the configuration, state, RPC and
   notifications data pertaining to MPLS TE interfaces, tunnels and LSPs
   parameters.  The data specific to the signaling protocol used to
   establish MPLS LSP(s) is outside the scope of this document and is
   covered in other documents, e.g. in [I-D.ietf-teas-yang-rsvp] and
   [I-D.ietf-teas-yang-rsvp-te].

2.1.  Module(s) Relationship

   The MPLS TE YANG module "ietf-te-mpls" imports the following modules:

   o  ietf-te and ietf-te-device defined in [I-D.ietf-teas-yang-te]

   o  ietf-te-types and ietf-te-packet-types defined in
      [I-D.ietf-teas-yang-te-types]

   o  ietf-routing-types defined in [RFC8294]

   o  ietf-mpls-static defined in [I-D.ietf-mpls-static-yang]

     TE generic       +---------+         o: augment
     module           | ietf-te |
                      +---------+
                         o  o
                         |  |
                   +-----+  +-----+
                   |              |
             +--------------+   +--------------+
     RSVP-TE | ietf-rsvp-te |   | ietf-te-mpls |
             +--------------+   +--------------+

   Figure 1: Relationship of MPLS TE module with TE generic and RSVP-TE
                               YANG modules

   The MPLS TE YANG module "ietf-te-mpls" augments the "ietf-te" TE
   generic YANG module as shown in Figure 1.

2.2.  Model Tree Diagram

   Figure 2 shows the tree diagram of the MPLS TE YANG model that is
   defined in ietf-te-mpls.yang.

   module: ietf-te-mpls
     augment /te:te/te-dev:performance-thresholds:
       +--rw throttle
          +--rw one-way-delay-offset?                  uint32
          +--rw measure-interval?                      uint32
          +--rw advertisement-interval?                uint32
          +--rw suppression-interval?                  uint32
          +--rw threshold-out
          |  +--rw one-way-delay?                 uint32
          |  +--rw one-way-residual-bandwidth?
          |  |       rt-types:bandwidth-ieee-float32
          |  +--rw one-way-available-bandwidth?
          |  |       rt-types:bandwidth-ieee-float32
          |  +--rw one-way-utilized-bandwidth?
          |  |       rt-types:bandwidth-ieee-float32
          |  +--rw two-way-delay?                 uint32
          |  +--rw one-way-min-delay?             uint32
          |  +--rw one-way-max-delay?             uint32
          |  +--rw one-way-delay-variation?       uint32
          |  +--rw one-way-packet-loss?           decimal64
          |  +--rw two-way-min-delay?             uint32
          |  +--rw two-way-max-delay?             uint32
          |  +--rw two-way-delay-variation?       uint32
          |  +--rw two-way-packet-loss?           decimal64
          +--rw threshold-in
          |  +--rw one-way-delay?                 uint32
          |  +--rw one-way-residual-bandwidth?
          |  |       rt-types:bandwidth-ieee-float32
          |  +--rw one-way-available-bandwidth?
          |  |       rt-types:bandwidth-ieee-float32
          |  +--rw one-way-utilized-bandwidth?
          |  |       rt-types:bandwidth-ieee-float32
          |  +--rw two-way-delay?                 uint32
          |  +--rw one-way-min-delay?             uint32
          |  +--rw one-way-max-delay?             uint32
          |  +--rw one-way-delay-variation?       uint32
          |  +--rw one-way-packet-loss?           decimal64
          |  +--rw two-way-min-delay?             uint32
          |  +--rw two-way-max-delay?             uint32
          |  +--rw two-way-delay-variation?       uint32
          |  +--rw two-way-packet-loss?           decimal64
          +--rw threshold-accelerated-advertisement
             +--rw one-way-delay?                 uint32
             +--rw one-way-residual-bandwidth?
             |       rt-types:bandwidth-ieee-float32
             +--rw one-way-available-bandwidth?
             |       rt-types:bandwidth-ieee-float32
             +--rw one-way-utilized-bandwidth?
             |       rt-types:bandwidth-ieee-float32
             +--rw two-way-delay?                 uint32
             +--rw one-way-min-delay?             uint32
             +--rw one-way-max-delay?             uint32
             +--rw one-way-delay-variation?       uint32
             +--rw one-way-packet-loss?           decimal64
             +--rw two-way-min-delay?             uint32
             +--rw two-way-max-delay?             uint32
             +--rw two-way-delay-variation?       uint32
             +--rw two-way-packet-loss?           decimal64
     augment /te:te/te:tunnels/te:tunnel:
       +--rw tunnel-igp-shortcut
       |  +--rw shortcut-eligible?   boolean
       |  +--rw metric-type?         identityref
       |  +--rw metric?              int32
       |  +--rw routing-afs*         inet:ip-version
       +--rw forwarding
       |  +--rw binding-label?   rt-types:mpls-label
       |  +--rw load-share?      uint32
       |  +--rw policy-class?    uint8
       +--rw bandwidth-mpls
          +--rw specification-type?
          |       te-packet-types:te-bandwidth-requested-type
          +--rw set-bandwidth?        te-packet-types:bandwidth-kbps
          +--rw class-type?           te-types:te-ds-class
          +--ro state
          |  +--ro signaled-bandwidth?   te-packet-types:bandwidth-kbps
          +--rw auto-bandwidth
             +--rw enabled?            boolean
             +--rw min-bw?             te-packet-types:bandwidth-kbps
             +--rw max-bw?             te-packet-types:bandwidth-kbps
             +--rw adjust-interval?    uint32
             +--rw adjust-threshold?   rt-types:percentage
             +--rw overflow
             |  +--rw enabled?               boolean
             |  +--rw overflow-threshold?    rt-types:percentage
             |  +--rw trigger-event-count?   uint16
             +--rw underflow
                +--rw enabled?               boolean
                +--rw underflow-threshold?   rt-types:percentage
                +--rw trigger-event-count?   uint16
     augment /te:te/te:tunnels/te:tunnel/te:p2p-primary-paths
               /te:p2p-primary-path:
       +--rw static-lsp-name?   mpls-static:static-lsp-ref
     augment /te:te/te:tunnels/te:tunnel/te:p2p-secondary-paths
               /te:p2p-secondary-path:
       +--rw static-lsp-name?   mpls-static:static-lsp-ref
     augment /te:te/te:globals/te:named-path-constraints
               /te:named-path-constraint:
       +--rw bandwidth
          +--rw specification-type?
          |       te-packet-types:te-bandwidth-requested-type
          +--rw set-bandwidth?        te-packet-types:bandwidth-kbps
          +--rw class-type?           te-types:te-ds-class
          +--ro state
             +--ro signaled-bandwidth?   te-packet-types:bandwidth-kbps
     augment /te:te/te:tunnels/te:tunnel/te:p2p-primary-paths
               /te:p2p-primary-path/te:lsps/te:lsp:
       +--ro performance-metrics-one-way
       |  +--ro one-way-delay?                           uint32
       |  +--ro one-way-delay-normality?
       |  |       te-types:performance-metrics-normality
       |  +--ro one-way-residual-bandwidth?
       |  |       rt-types:bandwidth-ieee-float32
       |  +--ro one-way-residual-bandwidth-normality?
       |  |       te-types:performance-metrics-normality
       |  +--ro one-way-available-bandwidth?
       |  |       rt-types:bandwidth-ieee-float32
       |  +--ro one-way-available-bandwidth-normality?
       |  |       te-types:performance-metrics-normality
       |  +--ro one-way-utilized-bandwidth?
       |  |       rt-types:bandwidth-ieee-float32
       |  +--ro one-way-utilized-bandwidth-normality?
       |  |       te-types:performance-metrics-normality
       |  +--ro one-way-min-delay?                       uint32
       |  +--ro one-way-min-delay-normality?
       |  |       te-types:performance-metrics-normality
       |  +--ro one-way-max-delay?                       uint32
       |  +--ro one-way-max-delay-normality?
       |  |       te-types:performance-metrics-normality
       |  +--ro one-way-delay-variation?                 uint32
       |  +--ro one-way-delay-variation-normality?
       |  |       te-types:performance-metrics-normality
       |  +--ro one-way-packet-loss?                     decimal64
       |  +--ro one-way-packet-loss-normality?
       |          te-types:performance-metrics-normality
       +--ro performance-metrics-two-way
          +--ro two-way-delay?                       uint32
          +--ro two-way-delay-normality?
          |       te-types:performance-metrics-normality
          +--ro two-way-min-delay?                   uint32
          +--ro two-way-min-delay-normality?
          |       te-types:performance-metrics-normality
          +--ro two-way-max-delay?                   uint32
          +--ro two-way-max-delay-normality?
          |       te-types:performance-metrics-normality
          +--ro two-way-delay-variation?             uint32
          +--ro two-way-delay-variation-normality?
          |       te-types:performance-metrics-normality
          +--ro two-way-packet-loss?                 decimal64
          +--ro two-way-packet-loss-normality?
                  te-types:performance-metrics-normality

           Figure 2: MPLS TE model configuration and state tree

2.3.  MPLS TE YANG Module

<CODE BEGINS> file "ietf-te-mpls@2019-02-23.yang" "ietf-te-mpls@2019-11-02.yang"
module ietf-te-mpls {
  yang-version 1.1;
  namespace "urn:ietf:params:xml:ns:yang:ietf-te-mpls";

  /* Replace with IANA when assigned */
  prefix "te-mpls";

  /* Import TE base model */
  import ietf-te {
    prefix te;
    reference "draft-ietf-teas-yang-te: A YANG Data Model for Traffic
               Engineering Tunnels and Interfaces";
  }

  import ietf-te-device {
    prefix te-dev;
    reference "draft-ietf-teas-yang-te: A YANG Data Model for Traffic
               Engineering Tunnels and Interfaces";
  }

  /* Import TE MPLS types */
  import ietf-te-packet-types {
    prefix "te-packet-types";
    reference "draft-ietf-teas-yang-te-types: A YANG Data Model for
               Common Traffic Engineering Types";
  }

  /* Import TE generic types */
  import ietf-te-types {
    prefix te-types;
    reference "draft-ietf-teas-yang-te-types: A YANG Data Model for
               Common Traffic Engineering Types";
  }

  /* Import routing types */
  import ietf-routing-types {
    prefix rt-types;
    reference "RFC8294: Common YANG Data Types for the Routing Area";
  }

  import ietf-mpls-static {
    prefix mpls-static;
    reference "draft-ietf-mpls-static-yang: A YANG Data Model
               for MPLS Static LSPs";
  }
  import ietf-inet-types {
    prefix inet;
    reference "RFC6991: Common YANG Data Types";
  }

  organization
    "IETF Traffic Engineering Architecture and Signaling (TEAS)
     Working Group";

  contact
    "WG Web:   <http://tools.ietf.org/wg/teas/>
     WG List:  <mailto:teas@ietf.org>

     WG Chair: Lou Berger
               <mailto:lberger@labn.net>

     WG Chair: Vishnu Pavan Beeram
               <mailto:vbeeram@juniper.net>

     Editor:   Tarek Saad
               <mailto:tsaad@cisco.com>

     Editor:   Rakesh Gandhi
               <mailto:rgandhi@cisco.com>

     Editor:   Vishnu Pavan Beeram
               <mailto:vbeeram@juniper.net>

     Editor:   Xufeng Liu
               <mailto: xufeng.liu.ietf@gmail.com>

     Editor:   Igor Bryskin
               <mailto:Igor.Bryskin@huawei.com>";
               <mailto:i_bryskin@yahoo.com>";

  description
    "YANG data module for MPLS TE configurations,
     state, RPC and notifications. The model fully conforms to
     the Network Management Datastore Architecture (NMDA).

     Copyright (c) 2018 IETF Trust and the persons
     identified as authors of the code.  All rights reserved.

     Redistribution and use in source and binary forms, with or
     without modification, is permitted pursuant to, and subject
     to the license terms contained in, the Simplified BSD License
     set forth in Section 4.c of the IETF Trust's Legal Provisions
     Relating to IETF Documents
     (https://trustee.ietf.org/license-info).
     This version of this YANG module is part of RFC XXXX; see
     the RFC itself for full legal notices.";

  // RFC Ed.: replace XXXX with actual RFC number and remove this
  // note.

  // RFC Ed.: update the date below with the date of RFC publication
  // and remove this note.

  revision "2019-02-23" "2019-11-02" {
    description "Latest update to MPLS TE YANG module.";
    reference
      "RFCXXXX: A YANG Data Model for MPLS-TE Tunnels and LSP(s)";
  }

  /* MPLS TE tunnel properties*/

  grouping tunnel-igp-shortcut-config {
    description "TE tunnel IGP shortcut configs";
    leaf shortcut-eligible {
      type boolean;
      default "true";
      description
        "Whether this LSP is considered to be eligible for us as a
        shortcut in the IGP. In the case that this leaf is set to
        true, the IGP SPF calculation uses the metric specified to
        determine whether traffic should be carried over this LSP";
    }
    leaf metric-type {
      type identityref {
        base te-types:lsp-metric-type;
      }
      default te-types:lsp-metric-inherited;
      description
        "The type of metric specification that should be used to set
        the LSP(s) metric";
    }
    leaf metric {
      type int32;
      description
        "The value of the metric that should be specified. The value
        supplied in this leaf is used in conjunction with the metric
        type to determine the value of the metric used by the system.
        Where the metric-type is set to lsp-metric-absolute - the
        value of this leaf is used directly; where it is set to
        lsp-metric-relative, the relevant (positive or negative)
        offset is used to formulate the metric; where metric-type
        is lsp-metric-inherited, the value of this leaf is not
        utilized";
    }
    leaf-list routing-afs {
      type inet:ip-version;
      description
        "Address families";

    }
  }

  grouping tunnel-igp-shortcuts {
    description
      "TE tunnel IGP shortcut grouping";
    container tunnel-igp-shortcut {
      description
        "Tunnel IGP shortcut properties";
      uses tunnel-igp-shortcut-config;
    }
  }

  grouping tunnel-forwarding-adjacency-configs {
    description "Tunnel forwarding adjacency grouping";
    leaf binding-label {
      type rt-types:mpls-label;
      description "MPLS tunnel binding label";
    }
    leaf load-share {
      type uint32 {
        range "1..4294967295";
      }
      description "ECMP tunnel forwarding
        load-share factor.";
    }
    leaf policy-class {
      type uint8 {
        range "1..7";
      }
      description
        "The class associated with this tunnel";
    }
  }

  grouping tunnel-forwarding-adjacency {
    description "Properties for using tunnel in forwarding.";
    container forwarding {
      description
        "Tunnel forwarding properties container";
      uses tunnel-forwarding-adjacency-configs;
    }
  }

  /*** End of MPLS TE tunnel configuration/state */
  grouping te-lsp-auto-bandwidth-config {
    description
      "Configuration parameters related to autobandwidth";

    leaf enabled {
      type boolean;
      default false;
      description
        "Enables MPLS auto-bandwidth on the
         LSP";
    }

    leaf min-bw {
      type te-packet-types:bandwidth-kbps;
      description
        "set the minimum bandwidth in Kbps for an
         auto-bandwidth LSP";
    }

    leaf max-bw {
      type te-packet-types:bandwidth-kbps;
      description
        "set the maximum bandwidth in Kbps for an
         auto-bandwidth LSP";
    }

    leaf adjust-interval {
      type uint32;
      description
        "time in seconds between adjustments to
         LSP bandwidth";
    }

    leaf adjust-threshold {
      type rt-types:percentage;
      description
        "percentage difference between the LSP's
         specified bandwidth and its current bandwidth
         allocation -- if the difference is greater than the
         specified percentage, auto-bandwidth adjustment is
         triggered";
    }
  }

  grouping te-lsp-overflow-config {
    description
     "configuration for MPLS LSP bandwidth
      overflow adjustment";

    leaf enabled {
      type boolean;
      default false;
      description
       "Enables MPLS LSP bandwidth overflow
        adjustment on the LSP";
    }

    leaf overflow-threshold {
      type rt-types:percentage;
      description
       "bandwidth percentage change to trigger
        an overflow event";

    }

    leaf trigger-event-count {
      type uint16;
      description
       "number of consecutive overflow sample
        events needed to trigger an overflow adjustment";
    }
  }

  grouping te-lsp-underflow-config {
    description
      "configuration for MPLS LSP bandwidth
      underflow adjustment";

    leaf enabled {
      type boolean;
      default false;
      description
       "enables bandwidth underflow
        adjustment on the LSP";
    }

    leaf underflow-threshold {
      type rt-types:percentage;
      description
       "bandwidth percentage change to trigger
        and underflow event";
    }

    leaf trigger-event-count {
      type uint16;
      description
       "number of consecutive underflow sample
        events needed to trigger an underflow adjustment";
    }
  }
  grouping te-tunnel-bandwidth-config {
    description
      "Configuration parameters related to bandwidth for a tunnel";

    leaf specification-type {
      type te-packet-types:te-bandwidth-requested-type;
      default specified;
      description
        "The method used for setting the bandwidth, either explicitly
        specified or configured";
    }

    leaf set-bandwidth {
      when "../specification-type = 'specified'" {
       description
         "The bandwidth value when bandwidth is explicitly
          specified";
      }
      type te-packet-types:bandwidth-kbps;
      description
       "set bandwidth explicitly, e.g., using
        offline calculation";
    }
    leaf class-type {
      type te-types:te-ds-class;
      description
        "The Class-Type of traffic transported by the LSP.";
      reference "RFC4124: section-4.3.1";
    }
  }

  grouping te-tunnel-bandwidth-state {
    description
      "Operational state parameters relating to bandwidth for a tunnel";

    leaf signaled-bandwidth {
      type te-packet-types:bandwidth-kbps;
      description
        "The currently signaled bandwidth of the LSP. In the case where
        the bandwidth is specified explicitly, then this will match the
        value of the set-bandwidth leaf; in cases where the bandwidth is
        dynamically computed by the system, the current value of the
        bandwidth should be reflected.";
    }
  }

  grouping tunnel-bandwidth_top {
    description
      "Top level grouping for specifying bandwidth for a tunnel";

    container bandwidth-mpls {
      description
        "Bandwidth configuration for TE LSPs";

      uses te-tunnel-bandwidth-config;

      container state {
        config false;
        description
          "State parameters related to bandwidth
          configuration of TE tunnels";
        uses te-tunnel-bandwidth-state;
      }

      container auto-bandwidth {
        when "../specification-type = 'auto'" {
          description
            "Include this container for auto bandwidth
            specific configuration";
        }
        description
          "Parameters related to auto-bandwidth";

        uses te-lsp-auto-bandwidth-config;

        container overflow {
          description
            "configuration of MPLS overflow bandwidth
            adjustment for the LSP";

          uses te-lsp-overflow-config;
        }

        container underflow {
          description
            "configuration of MPLS underflow bandwidth
            adjustment for the LSP";

          uses te-lsp-underflow-config;
        }
      }
    }
  }

  grouping te-path-bandwidth_top {
    description
      "Top level grouping for specifying bandwidth for a TE path";

    container bandwidth {
      description
        "Bandwidth configuration for TE LSPs";

      uses te-tunnel-bandwidth-config;
      container state {
        config false;
        description
          "State parameters related to bandwidth
          configuration of TE tunnels";
        uses te-tunnel-bandwidth-state;
      }
    }
  }

  /**
   * MPLS TE augmentations
   */
  augment "/te:te/te-dev:performance-thresholds" {
    uses te-packet-types:performance-metrics-throttle-container-packet;
    description
      "Performance parameters configurable thresholds";
  }

  /* MPLS TE interface augmentations */

  /* MPLS TE tunnel augmentations */
  augment "/te:te/te:tunnels/te:tunnel" {
    description "MPLS TE tunnel config augmentations";
    uses tunnel-igp-shortcuts;
    uses tunnel-forwarding-adjacency;
    uses tunnel-bandwidth_top;
  }

  /* MPLS TE LSPs augmentations */
  augment "/te:te/te:tunnels/te:tunnel/" +
          "te:p2p-primary-paths/te:p2p-primary-path" {
    when "/te:te/te:tunnels/te:tunnel" +
      "/te:p2p-primary-paths/te:p2p-primary-path" +
      "/te:path-setup-protocol = 'te-types:path-setup-static'" {
      description
      "When the path is statically provisioned";
    }
    description "MPLS TE LSP augmentation";
    leaf static-lsp-name {
      type mpls-static:static-lsp-ref;
      description "Static LSP name";
    }
  }

  augment "/te:te/te:tunnels/te:tunnel/" +
          "te:p2p-secondary-paths/te:p2p-secondary-path" {
    when "/te:te/te:tunnels/te:tunnel" +
      "/te:p2p-secondary-paths/te:p2p-secondary-path/" +
      "te:path-setup-protocol = 'te-types:path-setup-static'" {
      description
      "When the path is statically provisioned";
    }
    description "MPLS TE LSP augmentation";
    leaf static-lsp-name {
      type mpls-static:static-lsp-ref;
      description "Static LSP name";
    }
  }

  augment "/te:te/te:globals/te:named-path-constraints/" +
          "te:named-path-constraint" {
    description "foo";
    uses te-path-bandwidth_top;
  }

  augment "/te:te/te:tunnels/te:tunnel/te:p2p-primary-paths" +
          "/te:p2p-primary-path/te:lsps/te:lsp" {
    description
      "MPLS TE generic data augmentation pertaining to specific TE
       LSP";
    uses te-packet-types:performance-metrics-attributes-packet;
  }
}
<CODE ENDS>

                     Figure 3: TE generic YANG module

3.  IANA Considerations

   This document registers the following URIs in the IETF XML registry
   [RFC3688].  Following the format in [RFC3688], the following
   registration is requested to be made.

      URI: urn:ietf:params:xml:ns:yang:ietf-te-mpls
      XML: N/A, the requested URI is an XML namespace.

   This document registers a YANG module in the YANG Module Names
   registry [RFC6020].

      name:       ietf-te-mpls
      namespace:  urn:ietf:params:xml:ns:yang:ietf-te-mpls
      prefix:     ietf-te-mpls
      reference:  RFC3209

4.  Security Considerations

   The YANG module defined in this memo is designed to be accessed via
   the NETCONF protocol [RFC6241].  The lowest NETCONF layer is the
   secure transport layer and the mandatory-to-implement secure
   transport is SSH [RFC6242].  The NETCONF access control model
   [RFC8341] provides means to restrict access for particular NETCONF
   users to a pre-configured subset of all available NETCONF protocol
   operations and content.

   A number of data nodes defined in this YANG module are
   writable/creatable/deletable (i.e., config true, which is the
   default).  These data nodes may be considered sensitive or vulnerable
   in some network environments.  Write operations (e.g., <edit-config>)
   to these data nodes without proper protection can have a negative
   effect on MPLS network operations.  Following are the subtrees and
   data nodes and their sensitivity/vulnerability:

   "/te/tunnels": The augmentation to this list specifies configuration
   to TE tunnels on a device.  Unauthorized access to this list could
   cause the device to ignore packets it should receive and process.

   "/te/globals": The augmentation to this target specifies
   configuration applicable to the to all or one TE device.
   Unauthorized access to this list could cause the device to ignore
   packets it should receive and process.

5.  Contributors

      Himanshu Shah
      Ciena
      Email: hshah@ciena.com

6.  Normative References

   [I-D.ietf-mpls-static-yang]
              Saad, T., Raza, K., Gandhi, R., Liu, X., Beeram, V., Shah,
              H., and I. Bryskin,
              "A YANG Data Model for MPLS Static LSPs", draft-ietf-mpls-static-yang-07 draft-ietf-mpls-
              static-yang-10 (work in progress),
              November 2018. September 2019.

   [I-D.ietf-teas-yang-rsvp]
              Beeram, V., Saad, T., Gandhi, R., Liu, X., Bryskin, I., and H. Shah, I. Bryskin,
              "A YANG Data Model for Resource Reservation Protocol
              (RSVP)", draft-ietf-teas-yang-rsvp-10 draft-ietf-teas-yang-rsvp-11 (work in progress), February
              July 2019.

   [I-D.ietf-teas-yang-rsvp-te]
              Beeram, V., Saad, T., Gandhi, R., Liu, X., Bryskin, I.,
              and H. Shah, "A YANG Data Model for RSVP-TE Protocol",
              draft-ietf-teas-yang-rsvp-te-05
              draft-ietf-teas-yang-rsvp-te-07 (work in progress),
              February July
              2019.

   [I-D.ietf-teas-yang-te]
              Saad, T., Gandhi, R., Liu, X., Beeram, V., and I. Bryskin,
              "A YANG Data Model for Traffic Engineering Tunnels and
              Interfaces", draft-ietf-teas-yang-te-19 draft-ietf-teas-yang-te-21 (work in
              progress), February April 2019.

   [I-D.ietf-teas-yang-te-types]
              Saad, T., Gandhi, R., Liu, X., Beeram, V., and I. Bryskin,
              "Traffic Engineering Common YANG Types", draft-ietf-teas-
              yang-te-types-06
              yang-te-types-11 (work in progress), February October 2019.

   [RFC2119]  Bradner, S., "Key words for use in RFCs to Indicate
              Requirement Levels", BCP 14, RFC 2119,
              DOI 10.17487/RFC2119, March 1997,
              <https://www.rfc-editor.org/info/rfc2119>.

   [RFC3209]  Awduche, D., Berger, L., Gan, D., Li, T., Srinivasan, V.,
              and G. Swallow, "RSVP-TE: Extensions to RSVP for LSP
              Tunnels", RFC 3209, DOI 10.17487/RFC3209, December 2001,
              <https://www.rfc-editor.org/info/rfc3209>.

   [RFC3473]  Berger, L., Ed., "Generalized Multi-Protocol Label
              Switching (GMPLS) Signaling Resource ReserVation Protocol-
              Traffic Engineering (RSVP-TE) Extensions", RFC 3473,
              DOI 10.17487/RFC3473, January 2003,
              <https://www.rfc-editor.org/info/rfc3473>.

   [RFC3688]  Mealling, M., "The IETF XML Registry", BCP 81, RFC 3688,
              DOI 10.17487/RFC3688, January 2004,
              <https://www.rfc-editor.org/info/rfc3688>.

   [RFC6020]  Bjorklund, M., Ed., "YANG - A Data Modeling Language for
              the Network Configuration Protocol (NETCONF)", RFC 6020,
              DOI 10.17487/RFC6020, October 2010,
              <https://www.rfc-editor.org/info/rfc6020>.

   [RFC6241]  Enns, R., Ed., Bjorklund, M., Ed., Schoenwaelder, J., Ed.,
              and A. Bierman, Ed., "Network Configuration Protocol
              (NETCONF)", RFC 6241, DOI 10.17487/RFC6241, June 2011,
              <https://www.rfc-editor.org/info/rfc6241>.

   [RFC6242]  Wasserman, M., "Using the NETCONF Protocol over Secure
              Shell (SSH)", RFC 6242, DOI 10.17487/RFC6242, June 2011,
              <https://www.rfc-editor.org/info/rfc6242>.

   [RFC6991]  Schoenwaelder, J., Ed., "Common YANG Data Types",
              RFC 6991, DOI 10.17487/RFC6991, July 2013,
              <https://www.rfc-editor.org/info/rfc6991>.

   [RFC7950]  Bjorklund, M., Ed., "The YANG 1.1 Data Modeling Language",
              RFC 7950, DOI 10.17487/RFC7950, August 2016,
              <https://www.rfc-editor.org/info/rfc7950>.

   [RFC8040]  Bierman, A., Bjorklund, M., and K. Watsen, "RESTCONF
              Protocol", RFC 8040, DOI 10.17487/RFC8040, January 2017,
              <https://www.rfc-editor.org/info/rfc8040>.

   [RFC8174]  Leiba, B., "Ambiguity of Uppercase vs Lowercase in RFC
              2119 Key Words", BCP 14, RFC 8174, DOI 10.17487/RFC8174,
              May 2017, <https://www.rfc-editor.org/info/rfc8174>.

   [RFC8294]  Liu, X., Qu, Y., Lindem, A., Hopps, C., and L. Berger,
              "Common YANG Data Types for the Routing Area", RFC 8294,
              DOI 10.17487/RFC8294, December 2017,
              <https://www.rfc-editor.org/info/rfc8294>.

   [RFC8341]  Bierman, A. and M. Bjorklund, "Network Configuration
              Access Control Model", STD 91, RFC 8341,
              DOI 10.17487/RFC8341, March 2018,
              <https://www.rfc-editor.org/info/rfc8341>.

Authors' Addresses

   Tarek Saad
   Cisco Systems Inc
   Juniper Networks

   Email: tsaad@cisco.com tsaad@juniper.net

   Rakesh Gandhi
   Cisco Systems Inc

   Email: rgandhi@cisco.com
   Xufeng Liu
   Volta Networks

   Email: xufeng.liu.ietf@gmail.com

   Vishnu Pavan Beeram
   Juniper Networks

   Email: vbeeram@juniper.net

   Igor Bryskin
   Huawei Technologies
   Individual

   Email: Igor.Bryskin@huawei.com i_bryskin@yahoo.com