Network Working Group Reiner Ludwig INTERNET-DRAFT Ericsson Research Expires:September 2003April 2004 Andrei GurtovSonera Corporation March,TeliaSonera October, 2003 The Eifel Response Algorithm for TCP<draft-ietf-tsvwg-tcp-eifel-response-03.txt><draft-ietf-tsvwg-tcp-eifel-response-04.txt> Status of this memo This document is an Internet-Draft and is in full conformance with all provisions of Section 10 of RFC2026. Internet-Drafts are working documents of the Internet Engineering Task Force (IETF), its areas, and its working groups. Note that other groups may also distribute working documents as Internet-Drafts. Internet-Drafts are draft documents valid for a maximum of six months and may be updated, replaced, or obsoleted by other documents at any time. It is inappropriate to use Internet-Drafts as reference material or cite them other than as "work in progress". The list of current Internet-Drafts can be accessed at http://www.ietf.org/ietf/lid-abstracts.txt The list of Internet-Draft Shadow Directories can be accessed at http://www.ietf.org/shadow.html AbstractTheBased on an appropriate detection algorithm, the Eifel response algorithmrequiresprovides adetection algorithm to detectway for aposteriori whether theTCP senderhas entered loss recovery unnecessarily. In responseto respond to a detected spurioustimeout ittimeout. It adapts the retransmission timer to avoid further spurious timeouts, and can avoid - depending on the detection algorithm - the often unnecessary go-back-N retransmits that would otherwise be sent.Likewise, it adapts the duplicate acknowledgement threshold in response to a spurious fast retransmit.Inboth cases,addition, the Eifel response algorithm restores the congestion control state in such a way that packet bursts are avoided. Terminology The keywords MUST, MUST NOT, REQUIRED, SHALL, SHALL NOT, SHOULD, SHOULD NOT, RECOMMENDED, MAY, and OPTIONAL, when they appear in this document, are to be interpreted as described in [RFC2119]. We refer to the first-time transmission of an octet as the 'original transmit'. A subsequent transmission of the same octet is referred to as a 'retransmit'. In most cases this terminology can likewise be applied to data segments as opposed to octets. However, when repacketization occurs, a segment can contain both first-time transmissions and retransmissions of octets. In thatcasecase, this terminology is only consistent when applied to octets. For the Eifel detection and response algorithms this makes no difference as they also operate correctly when repacketization occurs. We use the term 'acceptable ACK' as defined in [RFC793]. That is an ACK that acknowledges previously unacknowledged data. We use theterm 'duplicate ACK', and the variable 'dupacks' as defined in [WS95]. The variable 'dupacks' is a counter of duplicate ACKs that have already been received by the TCP sender before the fast retransmit is sent. We use the variable 'DupThresh' to refer to the so-called duplicate acknowledgement threshold, i.e., the number of duplicate ACKs that need to arrive at the TCP sender to trigger a fast retransmit. Currently, DupThresh is specified as a fixed value of three [RFC2581]. Furthermore, we use theTCP sender state variables 'SND.UNA' and 'SND.NXT' as defined in [RFC793]. SND.UNA holds the segment sequence number of the oldest outstanding segment. SND.NXT holds the segment sequence number of the next segment the TCP sender will (re-)transmit. In addition, we define as 'SND.MAX' the segment sequence number of the next original transmit to be sent. The definition of SND.MAX is equivalent to the definition ofsnd_max'snd_max' in [WS95]. We use the TCP sender state variables 'cwnd' (congestion window), and 'ssthresh'(slow start(slow-start threshold), and the terms'SMSS','FlightSize', and 'Initial Window (IW)' as defined in [RFC2581]. FlightSize is the amount of outstanding datain the network, or alternatively, the difference between SND.MAX and SND.UNAat a given point in time. The IW is the size of the sender's congestion window after the three-way handshake is completed. We use the TCP sender state variables 'SRTT' and 'RTTVAR', and the term 'RTO' as defined in [RFC2988]. In addition, we assume that the TCP sender maintains in the variable 'RTT-SAMPLE' the value of the latest round-trip time (RTT) measurement. 1. Introduction The Eifel response algorithm relies on a detection algorithm such as the Eifel detection algorithm defined in[RFC***B].[RFC3522]. That document discusses the relevant background and motivation that also applies to this document. Hence, the reader is expected to be familiar with[RFC***B].[RFC3522]. Note that alternative response algorithms have been proposed[BDA03][BA02] that could also rely on the Eifel detection algorithm, and vice versa alternative detection algorithms have been proposed[BA02b],[BA03], [SK03] that could work together with the Eifel response algorithm.TheBased on an appropriate detection algorithm, the Eifel response algorithmrequiresprovides adetection algorithm to detectway for aposteriori whether theTCP senderhas entered loss recovery unnecessarily. In responseto respond to a detected spurioustimeout ittimeout. It adapts the retransmission timer to avoid further spurious timeouts, and can avoid - depending on the detection algorithm - the often unnecessary go-back-N retransmits that would otherwise be sent.Likewise, it adapts the duplicate acknowledgement threshold in response to a spurious fast retransmit.Inboth cases,addition, the Eifel response algorithm restores the congestion control state in such a way that packet bursts are avoided. Note: A previous version of the Eifel Response algorithm also included a response to a detected spurious fast retransmit. However, since a consensus was not reached about how to adapt the duplicate acknowledgement threshold in that case, that part of the algorithm was removed for the time being. 2. Interworking with Detection Algorithms If the Eifel response algorithm is implemented at the TCP sender, it MUST be implemented together with a detection algorithm that is specified in an RFC. Designers of detection algorithms who wantto offer the possibility thattheirdetectionalgorithmscanto work together with the Eifel response algorithmMUSTshould reuse the variable SpuriousRecovery with the semantics and defined values as specified in[RFC***B].[RFC3522]. In addition, we define LATE_SPUR_TO (equal -1) as another possible value of the variable SpuriousRecovery. Detection algorithmsmustshould set the value of SpuriousRecovery to LATE_SPUR_TO if the detection of a spurious retransmit is based upon receiving the ACK for theretransmit.retransmit (as opposed to the ACK for the original transmit). For example, this applies to detection algorithms that are based on the DSACKoption.option [BA03]. 3. The Eifel Response Algorithm The complete algorithm is specified in section2.1.3.1. In sections2.23.2 to2.4,3.5, we motivate the different steps of the algorithm. 3.1. The Algorithm Given that a TCP sender has enabled a detection algorithm that complies with the requirements set in Section 2, a TCP sender MAY use the Eifel response algorithm as defined in this subsection. If the Eifel response algorithm is used, the following steps MUST be taken by the TCP sender, but only upon initiation of loss recovery, i.e., wheneitherthe timeout-based retransmitor the fast retransmitis sent. Note: The algorithm MUST NOT be reinitiated after loss recovery has already started. In particular, it may not be reinitiated upon subsequent timeouts for the same segment, and not upon retransmitting segments other than the oldest outstanding segment.(0)(INIT) Before the variables cwnd and ssthresh get updated when loss recovery is initiated, set a "pipe_prev" variable as follows: pipe_prev <- max (FlightSize, ssthresh)(DTCT)(DET) This is a placeholder for a detection algorithm that must be executed at this point. In case[RFC***B][RFC3522] is used as the detection algorithm, steps (1) - (6) of that algorithm go here. (RESP) If SpuriousRecovery equalsFALSE, then proceed to step (DONE), else if SpuriousRecovery equalsSPUR_TO, then proceed to step (STO.1), else if SpuriousRecovery equals LATE_SPUR_TO, then proceed to step (STO.2), else(spurious fast retransmit)proceed to step(SFR).(DONE). (STO.1) Resume transmission off the top: Set SND.NXT <- SND.MAX (STO.2) Adapt the Conservativeness of the Retransmission Timer: If the retransmission timer is implemented according to [RFC2988], thenchangeif thecalculation of SRTT to SRTT <- SRTT + 1/FlightSize * (RTT-SAMPLE - SRTT) andTCP Timestamps option [RFC1323] is enabled for this connection, then set SRTT <- RTT-SAMPLE RTTVAR <-RTT-SAMPLE/2, recalculate the RTO, and restart the retransmission timer, Note: Even after changing the calculation of SRTT,RTT-SAMPLE/2 else set RTTVAR <- max (2 * RTTVAR, SRTT) SRTT <- 2 * SRTT Set RTO <- SRTT + max (G, 4*RTTVAR) Restart the retransmission timeris considered as being implemented according to [RFC2988].else appropriately adapt the conservativeness of the retransmissiontimer. Proceed to step (ReCC). (SFR) Adapt the duplicate acknowledgement threshold: Set DupThresh <- max (DupThresh, SpuriousRecovery)timer that is implemented. Proceed to step (ReCC). (ReCC)RevertReversing the congestion control state: If the acceptable ACK has the ECN-Echo flag [RFC3168]set OR the TCP sender has already taken more than three timeouts for the oldest outstanding segment,set, then proceed to step (DONE), else set cwnd <-min (pipe_prev, (FlightSizeFlightSize +IW))min (bytes_acked, IW) ssthresh <- pipe_prev Proceed to step (DONE). (CWV) Interworking with Congestion Window Validation (the variables 'T_last' and 'tcpnow' are defined in [RFC2861]): If congestion window validation is implemented according to [RFC2861], then set T_last <- tcpnow (DONE) No further processing. 3.2Responding to Spurious Timeouts 3.2.1 SuppressingStoring theUnnecessary go-back-N RetransmitsCurrent Congestion Control State (stepSTO.1) Without the use of the TCP timestamps option, theINIT) The TCP sendersuffers fromstores in pipe_prev what is considered a "safe" slow- start threshold (ssthresh) before loss recovery is initiated, i.e., before theretransmission ambiguity problem [Zh86], [KP87].loss indication is taken into account. Thismeans that whenis either thefirst acceptable ACK arrives after a spurious timeout,current FlightSize if the TCP sendermust believe that that ACK was sentis inresponse tocongestion avoidance or theretransmit whencurrent ssthresh if the TCP sender is infactslow-start. If the TCP sender later detects that itwas senthas entered loss recovery unnecessarily, then pipe_prev is used inresponsestep (ReCC) to reverse theoriginal transmit. Furthermore,congestion control state. Thus, until the loss recovery phase is terminated, pipe_prev maintains a memory of the congestion control state of the time right before the loss recovery phase was initiated. A similar approach is proposed in [RFC2861], where this state is stored in ssthresh directly after a TCP sendermust also believe that all otherhas become application-limited. There had been debates about whether the value of pipe_prev should be decayed over time, e.g., upon subsequent timeouts for the same outstanding segment. We do not require the decaying of pipe_prev for the Eifel response algorithm, and do not believe that such a conservative approach would be in place. Instead, we follow the idea of revalidating the congestion window through slow-start as suggested in [RFC2861]. That is, in step (ReCC), the cwnd is reset to a value that avoids large packet bursts, while ssthresh is reset to the value of pipe_prev. Note that [RFC2581] and [RFC2861] also do not require a decaying of ssthresh after it has been reset in response to a loss indication, or after a TCP sender has become application-limited. 3.3 Responding to Spurious Timeouts 3.3.1 Suppressing the Unnecessary go-back-N Retransmits (step STO.1) Without the use of the TCP timestamps option, the TCP sender suffers from the retransmission ambiguity problem [Zh86], [KP87]. Hence, when the first acceptable ACK arrives after a spurious timeout, the TCP sender must assume that this ACK was sent in response to the retransmit when in fact it was sent in response to the original transmit. Furthermore, the TCP sender must further assume that all other segments outstanding at that point were lost. Note: Except for certain cases where original ACKs were lost,thatthe first acceptable ACK cannot carry any DSACK option [RFC2883]. Consequently, once the TCP sender's state has been updated after the first acceptable ACK has arrived, SND.NXT equals SND.UNA. This is what causes the often unnecessary go-back-N retransmits.NowFrom that point on every arriving acceptable ACK that was sent in response to an original transmit will advance SND.NXT. But as long as SND.NXT is smaller than the value that SND.MAX had when the timeout occurred, those ACKs will clock outretransmits;retransmits, whether those segments were lost or not. In fact, during this phase the TCP sender breaks 'packet conservation' [Jac88]. This is because the go-back-N retransmits are sent duringslow start.slow-start. I.e., for each original transmit leaving the network, two retransmits are sent into the network as long as SND.NXT does not equal SND.MAX (see [LK00] for more detail). The use of the TCP timestamps option reliably eliminates the retransmission ambiguity problem.Thus, onceOnce the Eifel detection algorithm has detected that a timeout was spurious, it is therefore safe to let the TCP sender resume the transmission with new data. Thus, the Eifel response algorithm changes the TCP sender's state by setting SND.NXT to SND.MAX in that case.3.2.23.3.2 Adapting the Retransmission Timer (step STO.2) There is currently only one retransmission timer standardized for TCP [RFC2988]. We therefore only address that timer explicitly. Future standards that might define alternatives to [RFC2988] should propose similar measures to adapt the conservativeness of the retransmission timer. Since the timeout wasspurious, the TCP sender's RTT estimators are likely to be off. However, since timestamps are being used, a new and valid RTT measurement (RTT-SAMPLE) can be derived from the acceptable ACK. It is therefore suggested to reinitialize the RTT estimators from RTT-SAMPLE. Note that this RTT-SAMPLE will be relatively large since it will include the delay spike that caused the spurious timeout in the first place. To have the new RTO become effective, the retransmission timer needs to be restarted. This is consistent with [RFC2988] which recommends restarting the retransmission timer with the arrival of an acceptable ACK. When the path's RTT varies largely, it is recommended to take RTT samples more frequently than only once per RTT. This allows the TCP sender to track changes in the RTT more closely. In particular, a TCP sender can react more quickly to sudden increases of the RTT by sooner updating the RTO to a more conservative value. The TCP Timestamps option [RFC1323] provides this capability, allowing the TCP sender to sample the RTT from every segment that is acknowledged. Using timestamps across such paths leads to a more conservative TCP retransmission timer and reduces the risk of triggering spurious timeouts [IMLGK02]. On the other hand, it is known that executing the RTO calculation defined in [RFC2988] more often than once per RTT leads to an RTO that decays too quickly, i.e., that converges to the RTT too quickly. This is because of the fixed gains (1/8 and 1/4) of RFC2988's RTT estimators. When timing every segment these gains are increasingly too large with an increasing FlightSize. This leads to the effect that the RTT estimators "lose" their memory too soon. This is a known conflict between [RFC2988] and [RFC1323]. Especially, a large RTO resulting from an RTT spike will decay within one or two RTTs (e.g., see [LS00]). Hence, simply reinitializing RFC2988's RTT estimators from RTT-SAMPLE is probably not enough to make the retransmission timer sufficiently conservative for at least the next couple of RTTs. A solution for the case when every segment is timed according to [RFC1323] is to make the gains adaptive to the FlightSize [LS00]. We suggest to adopt this solution for at least the SRTT. 3.3 Responding to Spurious Fast Retransmits (step SFR) The assumption behind the fast retransmit algorithm [RFC2581] is that a segment was lost if as many duplicate ACKs have arrived at the TCP sender as indicated by DupThresh. Currently, DupThresh is specified as a fixed value of three [RFC2581]. That value is assumed to be sufficiently conservative so that packet reordering and/or packet duplication does not falsely trigger the fast retransmit algorithm. Clearly, this assumption does not hold for a particular TCP connection once the TCP sender detects that the last fast retransmit was spurious. It is therefore suggested to dynamically adapt DupThresh to the reordering characteristics observed over the course of a particular connection. At the beginning of a connection DupThresh is initialized with three. Then for each spurious fast retransmit that is detected, DupThresh is set to the maximum of the previous DupThresh, and the lowest value that would have avoided that last spurious fast retransmit. Note that the Eifel detection algorithm records the latter value in SpuriousRecovery. This strategy ensures thatspurious, the TCPsender is ablesender's RTT estimators are likely tocope with the longest reordering length seen onbe off. If timestamps are enabled for this connection, aparticular connection so far. However,new and valid RTT measurement (RTT-SAMPLE) can be derived from thestrategy may leadacceptable ACK. It is therefore suggested tofast timeouts [RFC***B], i.e., an event where the retransmission timer expires before the TCP sender receivesreinitialize theduplicate ACK that would trigger a fast retransmitRTT estimators from RTT-SAMPLE according to rule (2.2) ofthe oldest outstanding segment. Also, we believeRFC2988. Note that thisstrategy shouldRTT-SAMPLE will beimplemented together with an advanced version ofrelatively large since it will include theLimited Transmit algorithm [RFC3042]. That is for each duplicate ACKdelay spike thatarrives until DupThresh is reached,caused the spurious timeout in the first place. If timestamps are not enabled for this connection, the TCP sender shouldsent a new data segment if allowed by the TCP receiver's advertised window,instead double SRTT andifalso make RTTVAR more conservative. To have the newdataRTO become effective, the retransmission timer needs to be restarted. This isavailable. Although,consistent with [RFC2988] which recommends restarting thecurrent Limited Transmit algorithm only allows this forretransmission timer with thefirst two duplicate ACKs, we believe that sucharrival of anadvanced limited transmit strategy is safe. It is already implemented in widely deployed TCPs [SK02]. Other alternatives for responding to spurious fast retransmits are discussed in [BA02a].acceptable ACK. 3.4RevertingReversing the Congestion Control State (step ReCC) When a TCP sender enters loss recovery, it also assumes that is has received a congestion indication. In response to that it reduces cwnd, and ssthresh. However, once the TCP sender detects that the loss recovery has been falsely triggered, this reduction was unnecessary. In fact, no congestionsignalindication has been received. We therefore believe that it is safe to revert to the previous congestion control state following the approach of revalidating the congestion window as outlined below. This is unless the acceptable ACK signals congestion through the ECN-Echo flag [RFC3168]. In that case, the TCP sender MUST refrain from reversing congestion control state.We suggest to restoreIf the ECN-Echo flag is not set, cwnd is reset to theminimumsum of the current FlightSize and the minimum of IW and the number of bytes that have been acknowledged by the acceptable ACK. Note that the value of cwnd must not be changed any further for that ACK, and that the value of FlightSize at this point in time may be different from theprevious FlightSize, and the currentvalue of FlightSizeplus IW.in step (INIT). Thelatter avoids largevalue of IW puts a limit on the size of the packetburstsburst that the TCP sender mayoccur with less careful variants for restoring congestion control state. For example,send into theoriginal proposal [LK00] typically causes large burstsnetwork afterpacket reordering.the Eifel response algorithm has terminated. Thecurrent proposal limits a potential packet burst to IW, whichvalue of IW is considered an acceptable burst size. It is the amount of data that a TCP sender may send into a yet "unprobed" network at the beginning of a connection.In addition, we suggest to restoreThe TCP sender is then forced into slow-start by resetting ssthresh topipe_prev, i.e., the maximum ofthepreviousvalue ofssthresh and the value that FlightSize had when loss recovery was unnecessarily entered.pipe_prev. As a result, the TCP sender either immediately resumes probing the network for more bandwidth in congestion avoidance, or it firstslow starts until it has reached its previous share of the available bandwidth. Clearly, when the acceptable ACK signals congestion through the ECN-Echo flag [RFC3168], the TCP sender MUST refrain from reverting congestion control state. The sameslow-starts to what istrue if the TCP sender has already taken more than three timeoutsconsidered a "safe" operating point for theoldest outstanding segment. Allowing three timeouts while still revertingcongestioncontrol state goes beyond [RFC2581]. That standard recommends setting cwnd to no more than the restart window (one SMSS) ifwindow. In some cases, this can mean that theTCP sender hasfirst few acceptable ACKs that arrive will notsentclock out any datain an interval exceeding the current RTO. That is done to restartsegments. 3.5 Interworking with theACK clock which is believed to be lost. The case in step (ReCC)Congestion Window Validation Algorithm An implementation of theEifel responseCongestion Window Validation (CWV) algorithmis different. Since, an acceptable ACK corresponding to an original transmit has finally returned,[RFC2861] could potentially misinterpret a delay spike that caused a spurious timeout as a phase where the TCPhas reason to believe thatsender had been application-limited. To prevent the triggering of CWV algorithm in this case, theACK clock was merely interrupted but has now resumed "ticking" again.variable 'T_last' defined in [RFC2861] is reset. 4. Non-Conservative Advanced Loss Recovery after Spurious Timeouts A TCP sender MAY implement an optimistic form of advanced loss recovery after a spurious timeout has been detected as motivated in this section. Such a scheme MUST be terminated after the highest sequence number outstanding when the spurious timeout was detected has been acknowledged. We have studied environments where spurious timeouts and multiple losses from the same flight of packets often coincide [GL02].Note that we refer to theIn such a casewerethe oldest outstanding segment does arrive at the TCPreceiverreceiver, but one or more packets from the remaining outstanding flight are lost.We found that in such a caseIn those environments, TCP-Reno's performancecan even suffersuffers if the Eifel response algorithm is operated without an advanced loss recovery scheme such as NewReno [RFC2582], orSACK-basedSACK- based schemes[2018], [RFC***A].[RFC2018], [RFC3517]. The reason is TCP-Reno's aggressiveness after a spurious timeout. Even though it breaks 'packet conservation' (see Section 2.2.1) when blindly retransmitting all outstanding segments, it usually recoversthe back-to-back packet lossesall packets lost from that flight within a single round-trip time. On the contrary, the more conservative TCP-Reno/Eifelwasis often forced into another (backed-off)timeout in that case.timeout. However, in a more recent study [GL03], we found that the mentioned advanced loss recovery schemes are often too conservative to compete against TCP-Reno's blind go-back-N in terms of quickly recovering multiple losses after a spurious timeout. The problem with the NewReno scheme is that it does not exploit knowledge (e.g., provided through SACK options) about which segments were lost. The problem with the conservative SACK-based scheme[RFC***A][RFC3517] is that it waits for three SACKs before it retransmits a lost segment. This may often lead to a second - and in this case genuine - (potentially backed- off) timeout. In those cases TCP-Reno's loss recovery is often quicker due the blind go-back-N. This could be viewed as a disincentive to the deployment of the Eifel response algorithm.[Making TCP (even) more conservative by fixing a misbehavior in the name of 'packet conservation' would probably at most result in credits in the academic world.]We therefore suggest that a TCP sender MAY implement an optimistic (non-conservative) form of advanced loss recovery after a spurious timeout has been detected, if the following guidelines are met: - Packet Conservation: The TCP sender may not have more segments (counting both original transmits and retransmits) in flight than indicated by the congestion window. - A retransmit may only be sent when a potential loss has been indicated. For example, a single duplicate ACK is such an indication; potentially with the corresponding SACK info in case the SACK option is enabled for the connection. We have developed and evaluated such a scheme (a variant of NewReno that exploits SACK info) in [GL03] that shows good results. 5. IPR Considerations The IETF has been notified of intellectual property rights claimed in regard to some or all of the specification contained in this document. For more information consult the online list of claimed rights at http://www.ietf.org/ipr. The IETF takes no position regarding the validity or scope of any intellectual property or other rights that might be claimed to pertain to the implementation or use of the technology described in this document or the extent to which any license under such rights might or might not be available; neither does it represent that it has made any effort to identify any such rights. Information on the IETF's procedures with respect to rights in standards-track and standards-related documentation can be found in BCP-11. Copies of claims of rights made available for publication and any assurances of licenses to be made available, or the result of an attempt made to obtain a general license or permission for the use of such proprietary rights by implementors or users of this specification can be obtained from the IETF Secretariat. 6. Security Considerations There is a risk that a detection algorithm is fooled by spoofed ACKs that make genuine retransmits appear to the TCP sender as spurious retransmits. When such a detection algorithm is run together with the Eifel response algorithm, this could effectively disable congestion control at the TCP sender. Should this become a concern, the Eifel response algorithm SHOULD only be run together with detection algorithms that are known to be safe against such "ACK spoofing attacks". For example, the safe variant of the Eifel detection algorithm[RFC***B],[RFC3522], is a reliable method to protect against this risk. Acknowledgments Many thanks to Keith Sklower, Randy Katz, Michael Meyer, Stephan Baucke, Sally Floyd, Vern Paxson, Mark Allman, Ethan Blanton, Pasi Sarolahti,andAlexeyKuznetsovKuznetsov, and Yogesh Swami forvery usefulmany discussions that contributed to this work. Normative References [RFC2581]M.Allman,V.M., Paxson, V. and W. Stevens, TCP Congestion Control, RFC 2581, April 1999.[RFC3042] M. Allman, H. Balakrishnan, S. Floyd, Enhancing TCP's Loss Recovery Using Limited Transmit, RFC 3042, January 2001.[RFC2119]S.Bradner, S., Key words for use in RFCs to Indicate Requirement Levels, RFC 2119, March 1997. [RFC2582]S.Floyd, S. and T. Henderson, The NewReno Modification to TCP's Fast Recovery Algorithm, RFC 2582, April 1999. [RFC2883]S.Floyd,J.S., Mahdavi,M.J., Mathis,M.M., Podolsky, M. and A. Romanow, An Extension to the Selective Acknowledgement (SACK) Option for TCP, RFC 2883, July 2000. [RFC2861] Handley, M., Padhye, J. and S. Floyd, TCP Congestion Window Validation, RFC 2861, June 2000. [RFC1323]V.Jacobson,R.V., Braden, R. and D. Borman, TCP Extensions for High Performance, RFC 1323, May 1992.[RFC***B] R.[RFC3522] Ludwig, R. and M. Meyer, The Eifel Detection Algorithm for TCP,RFC***B, MarchRFC3522, April 2003. [RFC2018]M.Mathis,J.M., Mahdavi,S.J., Floyd, S. and A. Romanow, TCP Selective Acknowledgement Options, RFC 2018, October 1996. [RFC2988]V.Paxson, V. and M. Allman, Computing TCP's Retransmission Timer, RFC 2988, November 2000. [RFC793]J.Postel, J., Transmission Control Protocol, RFC793, September 1981. [RFC3168]K.Ramakrishnan,S.K., Floyd, S. and D. Black, The Addition of Explicit Congestion Notification (ECN) to IP, RFC 3168, September 2001 Informative References[BA02a] E.[BA02] Blanton, E. and M. Allman, On Making TCP More Robust to Packet Reordering, ACM Computer Communication Review, Vol. 32, No. 1, January 2002.[BA02b] E.[BA03] Blanton, E. and M. Allman, Using TCP DSACKs and SCTP Duplicate TSNs to Detect Spurious Retransmissions,draft-blanton- dsack-use-02.txtdraft- ietf-tsvwg-dsack-use-02.txt (work in progress), October2002. [BDA03] E. Blanton, R. Dimond, M. Allman. Practices for TCP Senders in the Face of Segment Reordering, draft-blanton-tcp- reordering-00.txt (work in progress), February 2003.. [RFC***A] E.2003. [RFC3517] Blanton,M.E., Allman,K.M., Fall, K. and L. Wang, A Conservative SACK-based Loss Recovery Algorithm for TCP,RFC***A, MarchRFC3517, April 2003.[Gu01] A. Gurtov, Effect of Delays on TCP Performance, In Proceedings of IFIP Personal Wireless Conference, August 2001.[GL02]A.Gurtov, A. and R. Ludwig, Evaluating the Eifel Algorithm for TCP in a GPRS Network, In Proceedings of the European Wireless Conference, February 2002. [GL03]A.Gurtov, A. and R. Ludwig, Responding to Spurious Timeouts in TCP, In Proceedings of IEEE INFOCOM 03, .[RFC3481] H. Inamura, G. Montenegro, R. Ludwig, A. Gurtov, F. Khafizov, TCP over Second (2.5G)[Jac88] Jacobson, V., Congestion Avoidance andThird (3G) Generation Wireless Networks, RFC3481, February 2003.Control, In Proceedings of ACM SIGCOMM 88. [KP87]P.Karn, P. and C. Partridge, Improving Round-Trip Time Estimates in Reliable Transport Protocols, In Proceedings of ACM SIGCOMM 87. [LK00]R.Ludwig, R. and R. H. Katz, The Eifel Algorithm: Making TCP Robust Against Spurious Retransmissions, ACM Computer Communication Review, Vol. 30, No. 1, January 2000.[LS00] R. Ludwig, K. Sklower, The Eifel Retransmission Timer, ACM Computer Communication Review, Vol. 30, No. 3, July 2000. [SK02] P. Sarolahti, A. Kuznetsov, Congestion Control in Linux TCP, In Proceedings of USENIX, June 2002.[SK03]P.Sarolahti, P. and M. Kojo, F-RTO:A TCP RTO RecoveryAn Algorithm forAvoiding Unnecessary Retransmissions, draft-sarolahti- tsvwg-tcp-frto-03.txtDetecting Spurious Retransmission Timeouts with TCP and SCTP, draft-ietf-tsvwg-tcp-frto-00.txt (work in progress),JanuaryOctober 2003. [WS95] Wright, G. R.Wright,and W. R. Stevens, TCP/IP Illustrated, Volume 2 (The Implementation), Addison Wesley, January 1995. [Zh86]L.Zhang, L., Why TCP Timers Don't Work Well, In Proceedings of ACM SIGCOMM 88. Author's Address Reiner Ludwig Ericsson Research (EED) Ericsson Allee 1 52134 Herzogenrath, Germany Email: Reiner.Ludwig@ericsson.com Andrei GurtovCellular Systems DevelopmentTeliaSonera Finland P.O. Box 970, FIN-00051 Sonera Helsinki, FinlandPhone: +358(0)20401 Fax: +358(0)204064365Email:andrei.gurtov@sonera.comandrei.gurtov@teliasonera.com Homepage: http://www.cs.helsinki.fi/u/gurtov This Internet-Draft expires inSeptember 2003.April 2004.